ML4PM, Copennagen, 14 October 2024

# **Predictive Process Monitoring** the story so far and trends for the future

Chiara Ghidini, Free University of Bozen - Bolzano Massimiliano Ronzani, Fondazione Bruno Kessler - Trento



## Outline

## • The story so far:

 Predictive Process Monitoring so far, or Process Mining and Supervised ML

## • Trends for the future:

- Chiara: what I would like to see

# Max: how trends in AI can affect Predictive Process Monitoring

# Predictive Process Monitoring An introduction



## **Predictive Process Monitoring (PPM)**





## Three dimensions

input





## **Dimension 1: what to predict**







prediction type



unstructured information

numeric

next activities

## prediction type

## **Different types of input information**

## Patient's history (trace)

## Control flow

Blood test

X-Ray

Payloads

8/09/2017 Bilirubin: 1.9 mg/DL Calcium: 8.0 mg/D

10/09/2107 Result: Spine abnormally curve

Unstructured content

|   | Diagnosis                         | Manipulation                   | Check Visit                   |
|---|-----------------------------------|--------------------------------|-------------------------------|
|   |                                   |                                |                               |
| d | 15/09/2017<br>diagnosis:Scoliosis | 20/09/2017<br>Duration: 10 min | 30/09/2017<br>Exit: recovered |
|   |                                   |                                |                               |
|   | "The patient                      | "The patient felt              |                               |

| "The patient<br>resents also a<br>light form of<br>lordosis» | "The patient felt<br>some pain during<br>the treatment" |  |
|--------------------------------------------------------------|---------------------------------------------------------|--|
|--------------------------------------------------------------|---------------------------------------------------------|--|



unstructured information

numeric

next activities

## prediction type

# Type of technique

## Model-based



## In literature, mainly ... Supervised Learning



## The "traditional" pipeline



## The "traditional" pipeline



## Why Prefixes?

- The partial ongoing trace is incomplete
- traces (trace prefixes) and the output that you want to predict
- Formally, it needs to learn a function

$$f(L, \sigma_i^m)$$

### So, ... we need to use prefix(es) to train models



Ongoing partial trace

The predictive model needs to learn the correlations between incomplete

 $= label_i$ 

## Which prefix(es) for which model?

The choice of prefix(es) depends upon:

the type of prediction you are interested in

Outcome prediction vs Time prediction of e happening in the middle of the process

• how early you want to get a prediction

At the beginning vs late in the process

## Which prefix(es) for which model?

Predictive model for a specific prefix length



 Single model with prefixes of different lengths altogether - using padding if needed -



| TH. | Go home  | Park car | Enter flat | 0 | 0 |
|-----|----------|----------|------------|---|---|
| ч   | 08:00 pm | 08:10 pm | 08:15 pm   | 0 | 0 |



Predictive model for prefix length 2

Predictive model for prefix length 3



Predictive model all prefix lengths



## The "traditional" pipeline



A. Leontjeva, R. Conforti, C. Di Francescomarino, M. Dumas, F. M. Maggi: **Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes.** BPM 2015: 297-313

## **Boolean encoding**





## **Frequency encoding**



![](_page_18_Picture_2.jpeg)

## Simple index encoding How to consider the ordering

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

## Index latest-payload encoding

## How to start considering data

| $\sigma_1$ | consultation<br>33<br>clinic | consultation<br>33<br>lab |              |    |
|------------|------------------------------|---------------------------|--------------|----|
| •••        |                              |                           |              |    |
|            | compute rate                 | payment                   |              |    |
| $\sigma_k$ | 56<br>clinic                 | 56<br>admin               |              |    |
|            | e <sub>1</sub>               | e <sub>2</sub>            |              |    |
|            |                              | As simple                 | e index + tr | ac |
|            |                              |                           |              |    |
|            |                              |                           |              |    |
|            | Encoding                     | g                         |              |    |

![](_page_20_Figure_4.jpeg)

![](_page_20_Figure_5.jpeg)

## e attribute values + datapayload values at h

![](_page_20_Figure_7.jpeg)

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

## **Complex index encoding** The full monty

| $\sigma_1$ | consultation | <br>receipt |  |
|------------|--------------|-------------|--|
|            | 33           | 33          |  |
|            | clinic       | <br>100EUR  |  |

| $\sigma_k$ | compute rate<br>56<br>clinic | •••• | visit<br>56<br>Iab3 | <br>payment<br>56<br>admin | True           |
|------------|------------------------------|------|---------------------|----------------------------|----------------|
|            | <b>e</b> <sub>1</sub>        |      | e <sub>h</sub>      | e <sub>m</sub>             | l <sub>k</sub> |

+ trace attribute values

Encoding

- - -

![](_page_21_Figure_5.jpeg)

## Features are activities and data payload values at each position up to h,

![](_page_21_Figure_7.jpeg)

![](_page_21_Picture_8.jpeg)

## **One-hot encoding (for next activity)**

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

## Plus temporal features!

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

| δ1 | $H_1$ | <b>W</b> <sub>1</sub> | e <sub>h</sub> | δ <sub>1</sub> | $H_1$ | <b>W</b> <sub>1</sub> | label  |
|----|-------|-----------------------|----------------|----------------|-------|-----------------------|--------|
| 0  | 8     | Mon                   | <br>010000     | 1              | 11    | Mon                   | 000010 |
|    |       |                       |                |                |       |                       |        |
| 0  | 13    | Sat                   | <br>000100     | 2              | 18    | Sat                   | 000001 |

![](_page_23_Figure_6.jpeg)

## The "traditional" pipeline

![](_page_24_Figure_1.jpeg)

## **Outcome-based predictions** The idea

- Prediction of categorical values (e.g., true/false, good/average/bad)
- The label is a categorical value

![](_page_25_Figure_4.jpeg)

![](_page_25_Figure_6.jpeg)

## • Given an event log L and an ongoing execution $\sigma_i^m$ of length m, we want to learn a function $f_c(L, \sigma_i^m) = \overline{label_i}$ as close as possible to the actual label

John's ongoing execution of length *m* 

|   | Register<br>patient<br>08:00 am | Visit<br>patient<br>08:15 am | Perform X-<br>Ray<br>08:54 am | Perform<br>ultrasoun<br>d<br>09:20 pm | Get<br>payment<br>09:47 am |
|---|---------------------------------|------------------------------|-------------------------------|---------------------------------------|----------------------------|
| ŀ | Histori                         | cal Tr                       | races                         |                                       |                            |

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

## **Numerical** –value predictions The idea

- Prediction of numerical values (e.g., the remaining time, the cost)
- The label is a numerical value

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_6.jpeg)

## • Given an event log L and an ongoing execution $\sigma_i^m$ of length m, we want to learn a function $f_n(L, \sigma_i^m) = \overline{label_i}$ as close as possible to the actual label

John's ongoing execution of length *m* 

| 5 |                     |                  |                   |                           |                |
|---|---------------------|------------------|-------------------|---------------------------|----------------|
| Ī | Register<br>patient | Visit<br>patient | Perform X-<br>Ray | Perform<br>ultrasoun<br>d | Get<br>payment |
| Щ | 08:00 am            | 08:15 am         | 08:54 am          | 09:20 pm                  | 09:47 am       |

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

runtime

## **Next-event predictions** The idea

- Prediction of future events (event class or data payload)
- Usually approaches first learn a function  $f_{1a}$  that given the first *m* events predicts the next event class and then iteratively predict the suffix until the last event  $\omega$ .

![](_page_29_Figure_3.jpeg)

![](_page_29_Picture_5.jpeg)

## **Next-event predictions** The idea

learn a function as the one below, as close as possible to the actual sequence of activities.

$$f_{sa}(L,\sigma_i^m) = \begin{cases} f_{1a}(\sigma^m) \\ f_{sa}(L, < e_1, e_2, ..., e_m, \\ & \text{with } e\text{'s event class} \end{cases}$$

## • Given an event log L and an ongoing execution $\sigma_i^m$ of length m, we want to

### if $f_{1a}(L, \sigma_i^m) = \omega$

$$e >$$
),

ass computed as  $f_{1a}(L, \sigma_i^m)$  otherwise

## **LSTM-based** approaches

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

runtime

## Summing up

- A healthy field
- Scopus: TITLE-ABS-KEY ("predictive process monito ring")

### Documents per Year

![](_page_32_Figure_4.jpeg)

Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon Dumas, Chiara Ghidini: Predictive Monitoring of Business Processes. CAiSE 2014: 457-472

# What next in ML-driven operational support?

Chiara's personal view on what should be there

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_4.jpeg)

## Hatfine (technical Show

A STATE AND A STATE OF A

### References

F. Taymouri, M. La Rosa, S. M. Erfani, "A Deep Adversarial Model for Suffix and Remaining Time Prediction of Event Sequences." SDM (2021) I. Ketykó, F. Mannhardt, M. Hassani, B. F. van Dongen, "What averages do not tell: predicting real life processes with sequential deep learning." SAC22 (2022)

B. R. Gunnarsson, S. v. Broucke, J. De Weerdt, "A Direct Data Aware LSTM Neural Network Architecture for Complete Remaining Trace and Runtime Prediction." IEEE Transactions on Services Computing, vol. 16, no. 4, (2023) M. Camargo, M. Dumas, O. González-Rojas. "Learning Accurate LSTM Models of Business Processes." BPM19 (2019).

### What are the trends in PPM?

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

- LUPIN: A LLM Approach for Activity Suffix Prediction in Business Process Event Logs. V. Pasquadibisceglie, A. Appice and D. Malerba.
- SuTraN: an Encoder-Decoder Transformer for Full Context-Aware
  Suffix Prediction of Business Processes. B. Wuyts, S. Vanden Broucke and J. De Weerdt.

### Next event and suffix prediction

![](_page_37_Picture_1.jpeg)

## Where to seek new techniques ML techniques?

### NLP

- Sequential data
- Categorical features
- Temporal dimension
- Causal constraints
- Multimodality
- Inter-sample dependency

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

## Where to seek new techniques ML techniques?

**PPM** 

![](_page_39_Figure_1.jpeg)

### **Time-series**

- Sequential data
- Categorical features
- Temporal dimension
- Causal constraints
- Multimodality
- Inter-sample dependency

## Where to seek new techniques ML techniques?

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

## Multimodal models

### Where can we apply ML techniques in PPM?

• Preprocessing

- Encoding of traces
- Training and inference

![](_page_41_Picture_4.jpeg)

Evaluation

![](_page_42_Picture_0.jpeg)

![](_page_43_Figure_0.jpeg)

### Categorical features

Given the set of categorical (or nominal) feature values  $A = \{a_1, ..., a_N\}$ *j-*th

• One-hot vectors: 
$$a_j \rightarrow \vec{v}_j = \delta_{i,j} = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{R}^N$$
 Introduces  
dimensions

- Introduce a • Label encoding:  $a_i \rightarrow j/(N) \in \mathbb{R}$ 
  - fictitious ordering
- Embedded vectors:  $a_i \rightarrow V(a_i) \in \mathbb{R}^d$ , 1 < d < N

Popular choice: many possibilities, hard embeddings, soft, pretrained, end-to-end

### Multimodal attributes fusion

How do we put together the different perspectives?

- Early fusion: features vector concatenation
- Cross-feature embedding: embed the combination of multiple features: e.g. Activity + Role
- Vision: Represent traces as 2D images to leverage CNNs
- Multimodal models: tensor fusion, multimodal attention

### From Vision

### Represent traces as 2D images to leverage CNNs

![](_page_46_Figure_2.jpeg)

.

V. Pasquadibisceglie, A. Appice, G. Castellano, D. Malerba, "Using Convolutional Neural Networks for Predictive Process Analytics", ICPM19 (2019)

### From Multivariate Time Series

![](_page_47_Figure_1.jpeg)

P. Pfeiffer, J. Lahann, P. Fettke, "Multivariate Business Process Representation Learning Utilizing Gramian Angular Fields and Convolutional Neural Networks." BPM21 (2021)

### Other inspirations from Multimodal models

3 features: Language, Visual, Audio (L,V,A)

![](_page_48_Figure_2.jpeg)

A. Zadeh, M. Chen, S. Poria, E. Cambria, L.-P. Morency, "Tensor Fusion Network for Multimodal Sentiment Analysis." EMNLP (2017)

### Other inspirations from Multimodal models

### Crossmodal attention: multimodal transformer

![](_page_49_Figure_2.jpeg)

Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z.Kolter, L-P Morency, R. Salakhutdinov, « Multimodal Transformer for Unaligned Multimodal Language Sequences." ACL (2019)

Die Meuwen Infeln fo hinder Gup men gegen Guent bes bem Bandt Indie ligea.

![](_page_50_Picture_1.jpeg)

## **Training and inference**

Next event and suffix prediction

### Neural architectures

### LSTM

- J. Evermann, J.-R. Rehse, and P. Fettke, "A deep learning approach for predicting process behaviour at runtime," BPM17, (2017).
- N. Tax, I. Verenich, M. La Rosa, M. Dumas, "Predictive business process monitoring with LSTM neural networks,"CAiSE17, (2017).
- M. Camargo, M. Dumas, O. G. Rojas, "Learning accurate LSTM models of business processes," BPM19, (2019).

. . . .

### TRANSFORMER

- Z. A. Bukhsh, A. Saeed, and R. M. Dijkman, "ProcessTransformer: Predictive Business Process Monitoring with Transformer Network," 2021
- G. Rivera Lazo, R. Nanculef, "Multi-attribute Transformers for Sequence Prediction in Business Process Management," in Discovery Science, 2022
- I. Ketykó, F. Mannhardt, M. Hassani, B. F. van Dongen, "What averages do not tell: predicting real life processes with sequential deep learning." SAC22 (2022)

### From next event to suffix

N. Tax, I. Verenich, M. La Rosa, M. Dumas, «Predictive Business Process Monitoring with LSTM Neural Networks.» CAiSE 2017.

Prefix

![](_page_53_Figure_3.jpeg)

![](_page_53_Figure_4.jpeg)

![](_page_53_Figure_5.jpeg)

### Open-loop training and closed-loop inference

Challenging in scenarios involving temporal dependencies or sequential decision-making

### From control systems

![](_page_54_Figure_3.jpeg)

Closed Loop System

Suffix prediction: Single event prediction + Autoregressive inference

**Training: (on single event prediction)** the next event is conditioned on the ground truth of previous events

Feedback Dependency, Error Accumulation

**Inference:** the next event is conditioned on previously predicted events

### Open-loop training and closed-loop inference

Challenging in scenarios involving temporal dependencies or sequential decision-making

Encoder-decoder architecture (from NLP Seq2Seq)

- Encoder: encodes the prefix in a latent space and pass it to the decoder
- **Decoder:** autoregressively (AR) generates the trace

Loss is computed ultimately between ground truth suffix and the predicted one

![](_page_55_Figure_6.jpeg)

I. Sutskever, O. Vinyals, Q. V. Le, "Sequence to sequence learning with neural networks", NIPS14, (2014)

### Open-loop training and closed-loop inference

Challenging in scenarios involving temporal dependencies or sequential decision-making

Encoder-decoder architecture (from NLP Seq2Seq)

- Encoder: encodes the prefix in a latent space and pass it to the decoder
- **Decoder:** autoregressively (AR) generates the trace

Loss is computed ultimately between ground truth suffix and the predicted one

![](_page_56_Figure_6.jpeg)

I. Sutskever, O. Vinyals, Q. V. Le, "Sequence to sequence learning with neural networks", NIPS14, (2014)

### **Error accumulation**

The error is accumulated during training Example: "I want some ice-cream"

![](_page_57_Figure_2.jpeg)

### **Teacher forcing** Feed ground truth values There, there input want some output RNN RNN coffee RNN Internal help some am prediction

**Scheduled Sampling:** Introduce gradually to the model its own prediction

## Garden path problem

### "The old man the boat."

Initially of less probable activities, which are redeemed by subsequent activities in the output sequence.

### Solution Beam Search (1976)

At every step in the autoregression, a fixed number of best candidates is kept.

![](_page_58_Figure_5.jpeg)

![](_page_58_Figure_6.jpeg)

### **Robustness Training**

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, "Generative adversarial nets", NIPS14 (2014)

### Adversarial methods

- For next event: F. Taymouri, M. La Rosa, S. M. Erfani, Z. D. Bozorgi, I. Verenich, "Predictive Business Process Monitoring via Generative Adversarial Nets: The Case of Next Event Prediction.", BPM20 (2020).
- For suffix: F. Taymouri, M. La Rosa, S. M. Erfani, "A Deep Adversarial Model for Suffix and Remaining Time Prediction of Event Sequences." SDM (2021).

### Data augmentation

• With noise insertion: M. Käppel, S. Jablonski. "Model-Agnostic Event Log Augmentation for Predictive Process Monitoring". CAiSE (2023)

### Lesson learned?

We should definitely use this whole jumble of techniques together in a super complex model to aim for 99% accuracy!

![](_page_60_Picture_2.jpeg)

### A final thought

Be careful not to create overly complex models for just a handful of accuracy points!

![](_page_61_Figure_2.jpeg)

D. Gunning, D. Aha, "DARPA's Explainable Artificial Intelligence (XAI) Program." AI Magazine (2019)

## **Inter-case predictions**

or, a trace is not always independent from other traces

- Traditional approaches make predictions taking into account a single execution.
- What if only limited resources are available?
- Predictions related to an ongoing case often also depend on other cases (inter-case dependency).

Arik Senderovich, Chiara Di Francescomarino, Fabrizio Maria Maggi: From knowledge-driven to data-driven inter-case feature encoding in predictive process monitoring. Inf. Syst. 84: 255-264 (2019)

![](_page_62_Figure_6.jpeg)

![](_page_62_Picture_7.jpeg)

## **Collective behaviour**

• Not many studies that investigate the system as a whole.

Insk behavior shment skohol-use tamily structure alcohol extreme alcohol extreme alcohol extreme alcohol extreme alcohol extreme extre

adolescence cosing physicablictivity contourny population ants wgtance prov

collective efficacy laming aggression personality growth secial learning gredate race entropy set animalig trearms civic engagement collect. Mention evolution racks animalig

engagement methanalysis boundaries consequences work deusion making deusion making sociology communication review

activism tass-tropaganda determinants internet valory systems algorithm

Ideology support collective motion state transition

sation prosocial behavior expression neterogeneity intelligence tracking lattice

intergroup relations fairness readure control control control flow drodets drodets

es gnuis aixilité environmental behavior

nips 🔍

![](_page_63_Picture_13.jpeg)

![](_page_63_Picture_14.jpeg)

iii a

## **Predicting with hybrid architectures**

- Traditional approaches make predictions taking into account only ML models
- What if other ways of inference are available?
  - Reasoning
  - LLMs

Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, Giulio Petrucci, Anton Yeshchenko: An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring. BPM 2017: 252-268

![](_page_64_Figure_6.jpeg)

![](_page_64_Picture_7.jpeg)

## Neuro symbolic architectures

 No studies that investigate the development of neuro-symbolic architectures for our data.

![](_page_65_Figure_2.jpeg)

![](_page_65_Picture_3.jpeg)

## Most work is on counterfactuals. Is this enough?

![](_page_66_Figure_1.jpeg)

### **Feature importance techniques**

![](_page_66_Figure_3.jpeg)

### **Counterfactual explanations**

Exploring "what-if" scenarios Watcher et al. (2017)

### \$5,000 lf income your was higher, you would been granted the loan

![](_page_66_Picture_7.jpeg)

## **Tool support**

- Nirdizati
- Apromore

. . . .

• Shall we have a repository of all our techniques?

Andrei Buliga, Riccardo Graziosi, Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, Williams Rizzi, Massimiliano Ronzani Nirdizati Light: A Modular Framework for **Explainable Predictive Process Monitoring CEUR** workshop proceedings

![](_page_67_Picture_5.jpeg)

![](_page_67_Picture_6.jpeg)

![](_page_67_Figure_7.jpeg)

![](_page_67_Picture_8.jpeg)

# Thanks to

Chiara Di Francescomarino, Wil van der Aalst, Marlon Dumas, Marcello La Rosa, Anna Leontjeva, Fabrizio Maria Maggi, Williams Rizzi, Arik Senderovich, Irene Teinemaa, Ilya Verenich, Anton Yeshchenko, Marco Montali, Andrei Buliga, Massilmiliano Ronzani, ....