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Abstract. Event data often exhibit complex and diverse patterns, as
traces generated by the same process can vary significantly due to a high
number of process execution variants. Trace clustering techniques help
analyze event logs by partitioning event data into smaller groups based
on similarity. However, existing approaches face significant challenges,
especially with respect to representational quality and trace encoding.
Existing techniques that transform traces into a vector space or count
activity occurrence typically result in the loss of essential sequencing in-
formation, as they ignore the order in which events occur. To address
these issues, we propose k-traceoids, a structure-preserving trace clus-
tering framework inspired by the k-means clustering method, which op-
erates directly on traces. Our results demonstrate the effectiveness of
k-traceoids in identifying meaningful clusters and show that our method
groups together traces that vectorial approaches would not recognize as
similar
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1 Introduction

Event data derived from modern real-world processes are often complex, am-
biguous and lack structure [1], making it difficult to extract meaningful insighgts
about process behaviour. Clustering techniques for traces, which represent the
specific executions of a process, address this challenge. By partitioning event
data into smaller, more homogeneous subsets and grouping similar process in-
stances, these methods simplify the analysis of complex behaviors in e.g. process
discovery [2] and anomaly detection [3].

However, many existing trace clustering approaches rely on vector space rep-
resentations, which require mapping traces to numerical feature vectors [4]. This
transformation often leads to a loss of essential information, particularly the
order of activities, which in turn limits the quality of the subsequent tasks [5, 6].

To address these limitations, we propose k-traceoids, a clustering algorithm
inspired by the well-known k-means approach [7]. Unlike existing trace clustering
approaches, k-traceoids preserves the sequential nature of traces by avoiding vec-
torial encoding and operating directly on traces. k-traceoids uses process models,
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not vectors, as centroids to represent clusters which enables a structure-aware
comparison of traces.

We evaluate our framework on real-world event logs and demonstrate its
effectiveness in uncovering meaningful trace groupings. Our results show that
k-traceoids can cluster together traces that would otherwise appear highly dis-
similar in vector space; i.e., with large distances, but are in fact behaviorally close
when compared using process models. This highlights the advantages of using
process models as centroids, as they better capture control-flow characteristics
than statistical aggregations in vector space.

2 Related Work

Trace clustering methods are typically categorized as distance-based [8, 9] or
process model-based [2, 10], with some hybrid approaches [11].

Distance-based clustering methods represent event sequences as numerical
vectors and apply algorithms like DBSCAN or k-means. Techniques to create
numerical representations range from one-hot encoding [6] and n-grams [12] to
learned embeddings [8]. Most approaches use Euclidean distance although recent
work explores alternative metrics tailored to process data [13]. However, creating
these vector representations is non-trivial [5, 6] and risks the loss of information.

Process-model based clustering techniques, in contrast, retain the structural
information of traces. For instance, ActiTrac [2] applies principles of active learn-
ing to select a subset of traces for inclusion to clusters. Similar to k-traceoids, this
method uses process models and fitness functions to determine cluster member-
ship. However, ActiTrac iteratively adds traces to a single cluster until a target
fitness threshold is met, then proceeds to form the next cluster. A limitation of
this approach is that recalculating the centroid after each iteration can heavily
influence the cluster stability. Our approach differs fundamentally: we generate
all clusters simultaneously, reassign all traces in a single step, and update all
models collectively.

The entropic clustering method proposed in [10] groups process variants by
minimizing entropic relevance (ER) scores with respect to cluster-specific DFGs.
This method is tightly bound to DFGs and specifically optimized for computing
ER scores on them, whereas k-traceoids offers a greater flexibility.

Trace clustering is often used as a preprocessing step for tasks such as pre-
dictive monitoring [14] and process analytics [15]. A key challenge, however, lies
in selecting an appropriate clustering method for a given dataset [4]. k-traceoids
addresses this by offering a flexible framework that can be adapted to diverse
datasets through parameter tuning, rather than requiring method-specific opti-
mization.
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3 Framework

This paper explores the topic of trace clustering, proposing a generic algorithm
and implementation inspired by k-means. Similarly to k-means, we begin by
specifying the number of clusters to detect, then assign traces grouped by vari-
ants to clusters in the initalization step. However, instead of centroids, i.e. the
arithmetic mean of instances, we use process models to represent each cluster.
The objective is to minimize the distance between each trace and its closest pro-
cess model by maximizing its fitness to a given model, analogous to how k-means
minimizes the distance between data points and centroids.

Table 1. Comparison of main concepts between k-traceoids and k-means.

Category k-traceoids k-means
Data Type Traces Numerical vectors
Initial Assignment Balances assignment by Random choice of k£ cen-
variant size troids, distance-based as-
signment
Cluster Representation Process model Cluster centroid
Distance Measure Conformance trace to model Distance to centroid
Reassignment Step Trace to cluster with highest Point to closest centroid
fitness
Convergence Criteria Stable trace assignments Stable point and centroid as-
signments

Table 1 highlights the main conceptual analogies and differences between our
approach and the k-means algorithm. One important difference is that k-means
is designed to work on vectorial spaces comprised of real numbers, whereas our
approach operates directly on traces. This design decision eliminates the need
to find a derived representation of the traces in a numerical vector space and
is therefore structure-preserving and avoids information loss from embeddings.
Our algorithm groups traces belonging to the same variant and, during initial-
ization, distributes these variants across clusters ensuring the number of traces
per cluster is somewhat balanced. Another notable difference is the cluster rep-
resentation and the corresponding distance measures. For k-means, the cluster
is represented by a virtual data point in the cluster center, the centroid, and the
distance to the centroid is defined in the same vector space. For our approach,
however, a process model represents the cluster, and the distance is measured
through the fitness of a trace to a cluster. Convergence is defined in both cases
through the stability of assignments, i.e., that the traces, or the data points
and centroid assignments, respectively, do not change. Figure 1 describes the
workflow of our approach comprising the following steps:

1. Initialization. The input consists of an event log containing n traces
distinguished by a unique case identifier. The desired number of clusters, k,
as well as the maximum number of iterations max_iterations to control the
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Fig. 1. The workflow of k-traceoids comprising initialization, model calculation and
reassignment of traces.

convergence, are set. For initialization, each of the n traces are grouped by their
according variant and each variant is assigned to one of the k clusters while
ensuring that the number of traces across clusters is somewhat balanced.

2. Model calculation. To determine the cluster representation, i.e., the
centroid, a model is generated given the set of traces within the cluster. Here,
model is intended as any possible description of a group of traces, e.g., process
model, most frequent variant, super variants among others.

3. Reassignment of traces. The cluster fitness is determined next by cal-
culating each trace’s conformance to each of the £ models and each trace is
reassigned to the cluster with the best fitting model, while ensuring that traces
belonging to the same variant stay in the same cluster.

Steps 2 and 3 are repeated iteratively until a convergence condition is met.
Convergence is reached if there are no changes in the assignment of traces to
the clusters between two consecutive iterations, i.e., all traces remained in the
same clusters, or the algorithm reaches the predefined maximum number of
iterations. Once convergence is achieved, the final process models for each cluster
are obtained along with the corresponding assignment of the clusters.

Our approach is highly general, can be instantiated in various ways and is
applicable to any type of trace data.
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4 Experimental Setup

The objective of our experiment is to demonstrate that the presented k-traceoids
framework can identify meaningful patterns that capture distinct behaviors in
different clusters while preserving the structure of the traces. The experiments
were executed on a Ubuntu 22.04.5 LTS KVM with 64 CPUs and 480 GB
RAM. For our analysis, we chose the well-known Road Traffic Fine Manage-
ment (RTFM) Process! event log due to its inherent structural patterns and its
widespread use within comparable research. The code used in this analysis as
well as the results for RTFM are fully available for reproducibility reasons in a
public repository?.

Hyperparameter Instantiation Description
k 2-10 Desired number of clusters
m IMF, HM  Model centroid calculation
c TBR, ALB Distance trace and model

Table 2. The hyperparameters chosen in this analysis. The k-traceoids algorithm is
evaluated with each hyperparameter combination for RTFM datatset.

Table 2 lists the hyperparameters chosen in this experiment and their re-
spective value ranges, namely k, the number of clusters that k-traceoids should
detect, m, the process discovery algorithm used to calculate the cluster centroid
(i.e., model), and ¢, the conformance check approach to compute the fitness be-
tween a trace and a model. Given RTMF as the input event log, we execute
the k-traceoids algorithm with all possible hyperparameter combinations of k,
m and c.

Upon inspection, the RTFM log shows four to five major variants, hence, we
chose a range between 2 — 10 for the number of clusters to be detected (k). To
ensure reproducibility, the random seed was fixed in all experiments.

Process models represent the cluster centroids (m) as they provide a struc-
tured representation for a group of traces. Specifically, we employed the Inductive
Miner - infrequent (IMF) [16] and the Heuristic Miner (HM) [17] process discov-
ery techniques given their well-known properties and overall acceptance in the
literature.

IMF uses Directly-Follows Graphs (DFG) [18] and finds cuts that divide the
complete event log into a subset of logs. The same procedure is again applied
to the sublogs. These hierarchies of cuts form a process tree which is further
translated into a Petri net. IMF is designed to account for infrequent activities
in the event log, while procuding sound models. Similarly, the HM algorithm
builds a DFG and then counts how often activities are followed by other activi-
ties. The key is that only frequent and significant connections are kept, using a

! https://doi.org/10.4121/uuid:270£fd440-1057-4fb9-89a9-b699b47990f5
2 https://github.com/NeroCorleone/k-traceoids/
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dependency measure that calculates the strength of two consecutive activities.
Weak connections, i.e., noisy control-flow relationships, are removed depending
on a predefined threshold. The final graph representation is used as the basis to
build a process model. Both discovery techniques are state-of-the-art, have been
established in many different applications and, thereby, provide a good baseline
to be employed by k-traceoids.

As distance metric ¢, we adopted conformance checking as the means to yield
fitness of each trace to the discovered process models. Specifically, we applied
Token Based Replay (TBR) and Alignment-Based Fitness (ALB) [19]. Both
approaches are widely exploited in the literature.

To guarantee convergence, we include a hyperparameter that controls the
maximum number of iterations during cluster reassignment, i.e., step three in
Figure 1. For this experiment, we chose max _iterations = 100. We further in-
troduced a timeout of 10 minutes for the ALB conformance check, accommo-
dating the fact that calculating the ALB for infrequent and complex traces can
take tremendous processing time. In these cases, the distance calculation is in-
terrupted and a fitness value of zero is assigned to a given trace-model pair,
ensuring that the algorithm converges in acceptable time.

5 Evaluation

To demonstrate the effectiveness of k-traceoids, we first present a qualitative in-
vestigation highlighting the main behaviors identified in different clusters. Then,
we move into a quantitative analysis to demonstrating cluster convergence and
soundness.

5.1 Qualitative Evaluation

We now present a qualitative evaluation for the configuration with & = 4, model
type IMF, and distance measure ALB to demonstrate how k-traceoids can effec-
tively capture distinct behaviours across separate clusters. Figure 2 illustrates
the resulting models, or cluster centroids, that were extracted using k-traceoids.
The four models differ in size, complexity, and linearity, and group together
traces that represent distinct process behaviours. For example, Clusters A and C
both allow for loops in the trace, while Cluster B captures long-term dependen-
cies in the processes as well as activity variations.

These distinctions become more apparent when analyzing exemplary traces
identified in each cluster, as can be seen in Table 3. In Clusters A and D, several
traces repeat the Payment activity. These traces are found in the same cluster
even though the differ substantially in trace length. However, while Cluster C
contains the simple repetition of a single activity (Payment), Cluster 0 captures
the repetition of two activities (Payment, Add Penalty). Cluster B, on the other
hand, includes traces with long-term dependencies (e.g., Create Fine, Send Fine,
Inser Fine Notification) and allows for variations in two specific activities: Add
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Fig. 2. Clustering outcome for k-traceoids configuration with k = 4, IMF and ALB.
Each clusters groups distinct traces, e.g. cluster A contains loops, while cluster B
contains long-term dependencies and variations of two activities.

Penalty and Appeal to Judge. Cluster D primarily captures small, linear process
executions.

Cluster Example Traces

A Create Fine, Send Fine, Insert Fine Notification,
Payment, Add penalty, Payment.
Create Fine - Send Fine - Insert Fine Notification - Add penalty -
Payment (3z) - Send for Credit Collection.
Create Fine - Send Fine - Insert Fine Notification - Add penalty -
Payment (10x) - Send for Credit Collection.
B Create Fine - Send Fine - Insert Fine Notification -
Appeal to Judge - Add penalty - Send for Credit Collection.
Create Fine - Send Fine - Insert Fine Notification -
Add penalty - Appeal to Judge - Send for Credit Collection.
C Create Fine - Send Fine - Payment.
Create Fine - Send Fine - Insert Fine Notification - Appeal to Judge -
Add penalty - Payment (15z).
D Create Fine - Payment.

Create Fine - Send Fine - Insert Fine Notification -
Insert Date Appeal to Prefecture - Add penalty - Send Appeal to Prefecture.

Table 3. Exemplary traces for k-traceoids outcome with configuration with & = 4,
IMF and ALB. Cluster A and D capture repetition of the same activities even with
substantial difference in trace length. Cluster C preserves variations of two activities
within one cluster.
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This qualitative analysis focuses on one specific configuration demonstrat-
ing the effectiveness of k-traceoids. Due to space constraints, we refer to the
accompanying GitHub repository for further evaluation results.

5.2 Quantitative Evaluation

Here, we present quantitative metrics evaluating the clustering outcomes for the
hyperparameter combinations listed in Table 2. It is important to note that
runs using model HM with distance measure ALB did not yield complete results
due to multiple errors encountered during execution. These issues appear to
stem from properties of such algorithms that do not match when combined and
require further investigation.
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Fig. 3. Normalized Shannon entropy of cluster assignments for different k. Higher
values indicate balanced clusters. Entropy tends to decrease with increasing k, partic-
ularly for IMF with TBR, suggesting higher cluster imbalance.

Figure 3 presents the Shannon entropy and normalized to the maximum pos-
sible value for each k to indicate cluster balance. High entropy values indicate
an even distribution of traces across clusters and therefore suggest a balanced
clustering, as each cluster is approximately equally likely. In contrast, low values
approaching zero reflect a skewed distribution of traces, indicating imbalanced
clusters. For most hyperparameter combinations, the clusters are balanced as
entropy is often above 0.8. For models discovered by HM, there is no substan-
tial difference in entropy values between the ALB and TBR distance measures,
although some data points are missing for the ALB execution. In contrast, for
IMF, TBR generally leads to lower entropy values compared to ALB. Notably,
for TBR with k as 3, 9 and 10, the entropy is among the lowest observed, suggest-
ing that such combination tends to group the majority of variants together while
leaving infrequent variants in smaller groups. This downward trend in entropy
with increasing k could be expected. As the number of clusters increases, the
constraint that all traces of a given variant must be assigned to the same cluster
can lead to uneven cluster sizes. Consequently, the likelihood that some clusters
contain significantly more traces than others increases, reducing entropy.
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Fig. 4. Mean fitness per k for selected discovery and conformance algorithms weighted
by the amount of traces per cluster.

Figure 4 shows the fitness of traces relative to the discovered process models
for different k values. Fitness measures how well a trace aligns with model. The
mean fitness is calculated for each model, weighted by the number of traces in
each cluster. Overall, fitness values are very high across the board, suggesting
that the traces are well-represented by their corresponding models. In many
cases, fitness scores are exactly 1, indicating meaningful clusters where similar
traces are grouped together.
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Fig. 5. Precision values per k for selected discovery and conformance algorithms.

Figure 5 presents the precision of the discovered models. Precision is a mea-
sure of specificity and evaluates how much unseen behavior a model allows be-
yond what is present in the event log. A precision value of 1 indicates that
the model permits only the behavior observed in the log, meaning the model
is highly specific and prone to overfitting. In contrast, a precision value close
to 0 indicates a too general model that allows to broad variations, thereby los-
ing interpretability or meaning. Results from Figure 5 demonstrate that HM
consistently achieves a precision of 1 across all k£ values, suggesting potential
overfitting. While a perfect precision score might suggest model overfitting in
other settings, it is a less relevant concern for clustering traces in process min-
ing, where all data points are available and there is no need to generalize to new



10 Kanilmaz et al.

data points. In this context, a perfect precision might hint that k-traceoid’s is
able to find distinct clusters. IMF combined with TBR shows executions with
more balanced precision values indicating a better generalization.
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k

Fig. 6. Number of iterations for convergence per k for selected discovery and confor-
mance algorithms.
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Figure 6 shows the number of iterations required for convergence, with max-
imum iterations at 100. In general, configurations involving IMF + TBR (light
orange) and HM + TBR (light blue) required a high number of iterations and of-
ten reached the maximum limit. IMF + ALB presents more interesting behavior,
converging more quickly for £k = 2 and k£ = 3, and also with efficient convergence
rates for higher values such as k = 5,6, 8,9 which may represent a good balance
between convergence speed and model quality. However, further investigation is
needed to understand why convergence is particularly fast at lower k values in
this case.
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Fig. 7. Cluster agreement between two iterations for £ = 10

We further investigated the case of k = 10, where most configurations con-
verged at the maximum iteration count. We therefore analyzed the cluster sta-
bility, i.e. the percentage of traces reassigned between consecutive iterations, see
Figure 7. IMF and TBR were the least stable configuration, which is expected
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since TBR is known to be less reliable than alignment-based conformance. In
contrast, other configurations reached around 98% stability after just 20 itera-
tions. Given the stability of the clustering outcomes, the convergence criterion
could be relaxed to stop when a certain percentage of traces remain stable across
a certain number of iterations.
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Fig. 8. Mean execution time for each configuration.

Figure 8 shows the mean execution times for all configurations. As expected,
execution times increase with larger values of k, since each iteration requires
discovering more process models and performing additional alignment checks.
While the growth in processing time appears to be roughly linear in k, we re-
frain from making conclusive statements, as the evaluation is limited to a single
dataset. To make reliable claims about execution times, further experiments on
larger and more heterogeneous datasets are necessary.

6 Conclusion

The complexity and variability inherent in real-world event data challenge tra-
ditional process mining techniques, often resulting in overly complex and less
interpretable models. To address this, we introduced k-traceoids, a novel trace
clustering algorithm that preserves the structural characteristics of event data
while avoiding the pitfalls of vector-based encodings. Both qualitative and quan-
titative evaluation demonstrated the framework’s ability to effectively identify
meaningful clusters in real-world event data. We have contributed a simple and
yet effective framework that is proven to yield suitable results due to the in-
herent guarantees of the k-means algorithm. k-traceoids offers high flexibility in
the choice of distance functions and model centroids and can therefore easily be
adapted to larger and more diverse real-world datasets.
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