
Domain Adaptation of LLMs for Process Data

Rafael Seidi Oyamada1, Jari Peeperkorn1, Jochen De Weerdt1, and Johannes
De Smedt1

Research Centre for Information Systems Engineering, KU Leuven, Belgium
{firstname.[de]lastname}@kuleuven.be

Abstract. In recent years, Large Language Models (LLMs) have emerged
as a prominent area of interest across various research domains, including
Process Mining (PM). Current applications in PM have predominantly
centered on prompt engineering strategies or the transformation of event
logs into narrative-style datasets, thereby exploiting the semantic capa-
bilities of LLMs to address diverse tasks. In contrast, this study investi-
gates the direct adaptation of pretrained LLMs to process data without
natural language reformulation, motivated by the fact that these models
excel in generating sequences of tokens, similar to the objective in PM.
More specifically, we focus on parameter-efficient fine-tuning techniques
to mitigate the computational overhead typically associated with such
models. Our experimental setup focuses on Predictive Process Monitor-
ing (PPM), and considers both single- and multi-task predictions. The
results demonstrate a potential improvement in predictive performance
over state-of-the-art recurrent neural network (RNN) approaches and
recent narrative-style-based solutions, particularly in the multi-task set-
ting. Additionally, our fine-tuned models exhibit faster convergence and
require significantly less hyperparameter optimization.

Keywords: Process Data · LLM Fine-tuning · Multi-task PPM

1 Introduction

LLMs have gained significant traction across various domains in recent years,
including PM. In particular, PPM (the branch of PM concerned with predict-
ing future process states and the behavior of cases) has begun to leverage its
capabilities to reason over process data, given natural language instructions for
contextualization. The rapid progress in artificial intelligence and the advances
of these powerful models offer new opportunities to improve PPM accuracy and
flexibility beyond what traditional predictive models have achieved.

Recent studies on LLMs for PM tasks mainly follow two directions. One
uses prompt engineering to enable pretrained LLMs to interpret event logs
through crafted instructions [6,1], thereby transforming process data into text for

This work was supported in part by the Research Foundation Flanders (FWO) under
Project 1294325N as well as grant number G039923N, and Internal Funds KU Leuven
under grant number C14/23/031.



2 Oyamada et al.

querying the model for insights. The other reformulates logs into narrative-style
datasets for direct use or fine-tuning [12,15]. Both rely on the models’ general
language skills, treating logs as plain text and overlooking domain adaptation
techniques to process-specific sequences. Therefore, in this paper, we systemat-
ically evaluate how (small) LLMs can be fine-tuned for multi-task PPM, using
parameter-efficient fine-tuning (PEFT) to lower the training costs. We test dif-
ferent PEFT methods to assess their ability to handle structured process data
and compare their predictive performance. We adapt the LLMs to directly con-
sume structured process data by replacing the language-based tokenization with
a task-specific tokenization of activity labels (i.e., replacing the embedding lay-
ers). This modification enables LLMs to learn from process data in its native
format, bypassing the need for natural language conversion, which allows us to
evaluate their intrinsic capability to interpret sequential process information.
Our experiments take into consideration real-world event logs and compare pre-
trained models with RNNs and prompt-based approaches. We focus on two PPM
tasks: next activity (NA) and remaining time (RT) prediction, where we eval-
uate the predictive performance under both single-task (separate models) and
multi-task (joint model) setups.

Our results demonstrate that LLMs can converge within a few training epochs
and require minimal hyperparameter optimization, making them more straight-
forward to work with than many current PPM solutions, which often demand
extensive hyperparameter tuning (RNNs) or longer runtime (narrative-style fine-
tuning). Moreover, using these models for multi-task learning proves to be more
robust and consistent, particularly due to notable improvements in RT predic-
tion. Furthermore, these findings highlight not only the potential of employing
them for PPM but also their inherent capacity to interpret sequential structures,
even when detached from their original natural language training context.

The remainder of the paper is structured as follows: We start by introducing
key concepts and related works in section 2. Subsequently, we motivate our
work in section 3 and introduce our proposal in section 4. Finally, we present
our results in section 5 and conclude in section 6.

2 Background and Related Work

2.1 PM and PPM

In PM, an event log L consists of a set of cases P (a.k.a., process instances or pro-
cess executions). Each case pc ∈ P comprises a trace tc (a finite, ordered sequence
of events) and a case identifier c. We denote a trace as tc = ⟨e0, e1, . . . , en⟩, where
each event ec,i corresponds to the i-th recorded activity execution in the case. For
simplicity, we omit the case identifier and write a generic event ei = (a, time),
where a ∈ A is the activity label from the activity set A present in L, and time
is the timestamp of execution. Alternatively, events can be composed of event
or case attributes as well, but these are not considered in this paper since we
focus on features common to all event logs, aiming for a more robust systematic
evaluation.



Domain Adaptation of LLMs for Process Data 3

PPM is a subfield of PM focused on forecasting future behavior of ongoing
process instances using predictive models [14]. Generally, three main types can
be distinguished: predicting the next activity, estimating the remaining time,
and predicting the outcome. Suffix prediction is also a common task, and it
is often seen as an extended form of next activity prediction [18]. This paper
focuses on NA and RT prediction. NA prediction focuses on the activity that
will be executed at time step i + 1, given an ongoing process at any time step
i ≥ 0. It can be defined as the function fNA : ti → A, where ti represents the
trace state at time step i, and A is the set of possible activities. RT prediction
forecasts the time difference between the current event timestamp and the last
event timestamp, and can be defined as fRT : ti → R+, for R+ being the output
of a positive real number representing the estimated remaining time. These tasks
can be tackled individually (single-task learning) or jointly (multi-task learning).
In the multi-task setup, one model is trained to predict both the next activity
and the remaining time [18], and can be defined as fNA,RT : ti → ⟨A,R+⟩.

To train such models, event logs are typically converted into structured
datasets by extracting prefixes (partial cases up to a timestamp i) to build a
training set Dp. Alternatively, the usage of full traces Dt in a many-to-many
setup with teacher forcing has been recently proposed [16], where the model re-
ceives the true previous event at each step to predict the next, avoiding error
accumulation. For instance, given t = ⟨a, b, c, d, e⟩, the input xt = ⟨a, b, c, d, e⟩
is paired with target yt = ⟨b, c, d, e, <eos>⟩, where <eos> marks the end of the
sequence.

2.2 Applications of Large Language Models in PM

LLMs have gained significant traction in both research and industry, includ-
ing PM. Their use generally falls into two categories: prompt engineering and
fine-tuning. Prompt engineering leverages the model’s pretrained capabilities
by crafting structured inputs without modifying the model’s parameters. Tech-
niques like few-shot learning and chain-of-thought prompting improve perfor-
mance by adding examples or logical reasoning steps within the prompt [13].
Fine-tuning, in contrast, adapts the model by modifying its parameters, either
by updating parts of the existing architecture or inserting lightweight adapter
layers. Approaches like freezing most of the model while training a small sub-
set of layers [9] or using low-rank adapters [4] fall under the PEFT paradigm,
allowing models to adapt to new tasks with minimal overhead. In PM, prompt-
based methods use LLMs directly on event log data to perform tasks such as
process model discovery, waiting time cause detection, and explain recommenda-
tions in prescriptive systems [1,2,7,6]. These methods generally treat event logs
as natural language inputs and rely on the LLM’s semantic understanding. For
instance, transforming event logs into text leads to solutions for suffix predic-
tion [12], next activity prediction and anomaly detection [15], and next event
prediction based on the traditional XES format. Finally, rather than relying on
a natural language interface to LLMs, [9] explores transfer learning from a small
(4-layer) transformer model trained on a real event log and fine-tuned on other



4 Oyamada et al.

ones. Their work provides useful insights, including the need for retraining em-
bedding layers to adapt the domain-specific vocabulary and syntactic rules to
new event logs.

3 Motivation

The works introduced in the previous section mainly leverage the textual and
semantic understanding of LLMs for PM tasks, such as handcrafted prompts or
narrative-style fine-tuning [12,1]. For instance, a recent evaluation targeting the
semantic awareness of LLMs has been proposed [15], where ongoing processes
are turned into narrative stories. This approach, although insightful, has a small
methodological flaw, since the proposed textual representation provides a list of
possible next activities to be predicted, but this list includes only the activities
possible for the ongoing variant instead of the complete list from the event log.
Hence, this renders an unrealistic scenario for online settings since the complete
process variant of an ongoing process is unknown. Next to this, relying solely on
the semantic meaning of activity labels disregards other issues regarding their
quality, arbitrariness, or language variation 1, and how these issues could affect
results.

In contrast, our goal is to bring a systematic approach to leverage the ca-
pabilities of such models for PPM tasks via fine-tuning. The current textual
abstraction, while convenient, raises a fundamental misalignment: event logs are
not linguistic artifacts that adhere to natural language grammar and vocabulary
underpinning the syntax and semantics, but rather use a smaller alphabet (set
of activity labels) with a more structured syntax according to domain-specific
behavioral relations. Suppose prompts are crafted using textual representations
of event logs. In that case, the model might leverage prior semantic information
that is not necessarily contextualized for process data compared to an adapted,
fine-tuned model. The latter solution will force a pretrained model to adapt its
knowledge to a new domain, through aspects such as (re)training small sets of
weights, positional encoding, and process-specific embedding layers, which can
better reflect the structure and behavioral relations of the process

Furthermore, prompt engineering requires expert knowledge and adds an-
other dimension of complexity to carefully designing such instructions, which
can be error-prone due to user mistakes (e.g., typos, bias, accidentally mixing
up terms, etc.) or to the model’s sensitivity (e.g., tiny changes in phrasing may
lead to completely different results). Recent studies show that prompt design
strongly influences model behavior: small changes such as paraphrasing [17] or
reordering few-shot examples [8], can significantly affect outcomes [13,10]. These
issues highlight the fragility of prompt-based approaches, being prone to human
error, and requiring expertise to describe processes, define inputs, and specify
the expected output format. We further argue that semantic reasoning alone, as
captured by LLMs trained on natural text, is insufficient for modeling structured

1 The BPI 2012 event log, for instance, has labels recorded in both English and Dutch.



Domain Adaptation of LLMs for Process Data 5

process behavior. Additionally, the domain adaptation via PEFT from modern
LLMs to process data is an overlooked task in the current PPM literature. There-
fore, in the following, we present our proposal to address this gap.

4 Methodology

Based on the motivation stated above, we employ different PEFT strategies for
different LLMs and validate their effectiveness by comparing them with state-of-
the-art RNN-based and the recent prompt-based solutions, both in single-task
and multi-task training settings. The underlying motivation is that a single,
versatile model capable of handling multiple prediction tasks is preferable to
maintaining separate models, as it reduces deployment complexity and resource
overhead. Moreover, we argue that fine-tuning on process data as-is should be
more effective than fine-tuning on process data represented as mere text. Our
end-to-end evaluation framework is inspired by [5] and can be structured into
four main components: input layers, backbone, output layers, and the PEFT of
these components.

Input layers (I). Consider the input event features of shape (B,L, F ), where
B is the batch size, L is the sequence length, and F is the number of features.
The input layer turns these raw features into a common vector space. For each
categorical feature with vocabulary size Vcf (i.e., the number of unique labels),
an embedding layer maps each category to a dense tensor of size Ecf . On the
other hand, n numerical features can be straightforwardly passed through a
linear projection layer to dimension Enf . The outputs are then fused (usually
by summation or concatenation) into a final embedding of size E = Ecf ⊕Enf ,
where ⊕ is the employed fusion operation. This produces an embedded input
tensor of shape (B,L,E).

Backbone (BB). The backbone transforms this tensor into an output tensor
(B,L,D). It is composed of repeating blocks, each containing one or more layers.
Let us consider a simple example: in recurrent networks, a block is a single
recurrent layer. Thus, stacking n blocks creates an n-layer deep RNN. Similarly,
in decoder-only transformers, a block comprises a multi-head self-attention layer,
a feed-forward layer, residual connections, and layer normalization. This block-
based design makes it easy to compare models and fine-tuning techniques by
varying models’ sizes while keeping the input/output interface fixed.

Output layers (O). These layers map backbone outputs to task-specific pre-
dictions. Similarly to the other components, design choices are considered, and
one may attach one linear head per task, or insert a shared multi-layer percep-
tron network before branching into separate linear heads. For example, consider
the problem of predicting the NA and the RT simultaneously. Starting from the
backbone output (B,L,D), two linear heads can be implemented to run in par-
allel: one maps (B,L,D) → (B,L,A) for NA prediction (for A classes), and the
other maps (B,L,D) → (B,L, 1) for RT prediction.

PEFT of LLMs for Process Data. Finally, PEFT refers to training only a
small part of the parameters rather than the full (large) model. It aims to adapt



6 Oyamada et al.

such models to new tasks efficiently, avoiding the cost of full fine-tuning, which is
often impractical for models with millions or billions of parameters. In this work,
we train new, smaller I/O layers from scratch to reflect process-specific features,
while the backbone is either frozen or slightly modified. Thus, we formally de-
fine this module as follows. Let P denote the full set of backbone parameter
weights. We partition these into P = Pfr ∪ θ, Pfr ∩ θ = ∅, where Pfr are
frozen parameters and θ are the trainable parameters. In this paper, we consider
three PEFT settings (although the proposed approach is not limited to). Full
freezing: θ = ∅, Pfr = P , where all backbone parameters remain frozen and
are not updated, i.e., the gradient calculation is disabled; Partial freezing:
θ ⊂ P, Pfr = P \ θ, where only a selected subset of the backbone weights is
selected to be updated; and Adapter-based tuning: θ = ϕ, Pfr = P , where
ϕ are new parameters added between layers of the frozen backbone. The adapter-
based tuning employed in this work is the recent low-rank adapter (LoRA) [4].
Given an arbitrary layer from a backbone containing a weight matrix W ∈ Rm×n,
LoRA introduces two low-rank matrices B ∈ Rm×r and A ∈ Rr×n, and replaces
W with W ′ = W +BA; thus, only A and B are learned, which reduces memory
usage. LoRA has been applied to PPM [15], but only for fine-tuning narrative-
style datasets, unlike our focus on adapting to process semantics. Additionally,
while prior work often fine-tunes only the backbone, using the process data
directly requires training the I/O layers from scratch to learn a smaller, domain-
specific vocabulary of categorical event features.

5 Experiments

5.1 Experimental Setup

Event Logs, Preprocessing, and Tasks. We use five well-known, publicly
available event logs: BPI12,2, BPI17,3, and three versions of BPI20:4 Request
for Payment (BPI20RfP), Prepaid Travel Costs (BPI20PTC), and Permit Data
(BPI20PD). These logs were chosen for their diversity in size, structure, and
event complexity, as summarized in Table 1. During preprocessing, we discard
cases with fewer than two events and extract time features from timestamps [11].
Numerical features are z-score normalized; the only categorical feature is the
activity label, indexed for embeddings. We disregard alternative features in order
to systematically evaluate using only common features for all datasets. We use
the unbiased split [19] to divide data into train and test sets. Event sequences
are encoded using trace encoding [16], instead of prefix encoding (see section 2).
These sequences are used to train single-task and multi-task baselines, except
for the prompt-based one, which only supports the former. Due to the LLM
cost, we only train them in the multi-task setup, as deploying multiple models is
impractical. Note that, for now, suffix prediction is omitted due to the fact that
2 https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
3 https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
4 https://data.4tu.nl/collections/_/5065541/1

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
https://data.4tu.nl/collections/_/5065541/1


Domain Adaptation of LLMs for Process Data 7

we are using decoder-only LLMs, so it raises the disalignment between input
and output data: in our approach, the former consists of activity labels and
time-related features, whereas the latter is composed of activity labels and the
remaining time.

Table 1: Properties of event logs.

Log # cases # evt. # act. Trace length

BPI20PTC 2099 18246 29 8.6927±2.3
BPI20RfP 6886 36796 19 5.3436±1.5
BPI20TPD 7065 86581 51 12.2549±5.6

BPI12 13087 262200 24 20.0351±19.9
BPI17 31509 1202267 26 38.1563±16.7

Input and Output Layers. To
ensure comparability and for abla-
tion purposes, all models use iden-
tical I/O-layers (i.e., all backbones,
whether trained from scratch or fine-
tuned). The input layer comprises an
embedding layer for categorical data
and a linear projection for numerical
features, which are summed and re-
sult in a latent representation of dimension nembed. The output layer consists
of a single linear head per target task: two heads in multi-task settings (NA and
RT), and one in single-task setups.

Backbones and PEFT Methods. The first baseline is a state-of-the-art
recurrent model using the well-known Long Short-Term Memory (LSTM) [14].
As a second baseline, we adopt the best transfer learning setup from [9], which
trains a vanilla transformer on the Helpdesk event log and fine-tunes it on others.
Since the vanilla transformer is outdated and small, we replace it with GPT-2
(named PM-GPT2 by us) for fair comparisons, the latest open GPT model with
about 0.1 billion parameters. As a third baseline, we extend the narrative-style
S-NAP model [15] to our datasets, which transforms traces into prompts and fine-
tunes a Llama model using LoRA (the original architecture is kept unchanged
since it makes use of its textual capabilities). However, the original version writes
prompts by listing the possible activities to be predicted for the ongoing trace
variant only, which is unrealistic since the model cannot see which variant will
result from an ongoing execution. To ensure fair comparison, we adapt their
narrative-style input to use all the activities from the train set instead. Finally,
in line with open science and because fine-tuning requires model access, we do not
include up-to-date large models for in-context learning and only use open-source
models: Qwen2 (0.5B parameters) and Llama3.2 (1B parameters), to compare
architecture and scale. Smaller models are also preferable for fast inference in
production.

Hyperparameter Search Space. We perform a grid search to evaluate
model scaling, such as increasing the RNN size to compete with LLMs, as it
allows systematic evaluation of fixed configurations without relying on sequential
heuristics of automated methods, like Bayesian optimization. For LSTMs, we
optimize the following hyperparameters: the number of layers (1 to 6), learning
rates (5e-4, 1e-4, 5e-5), embedding (32, 128, 256, 512), hidden (128, 256, 512),
and batch sizes (32, 64, 256). For freezing, we choose full freezing or unfreeze
specific sets of layers for fine-tuning: (0), (0,1), (-1), (-1, -2), where -1 and -2 refer
to the last and the penultimate layers, respectively. For LoRA, we set r to 256
and alpha to 2r = 512 as suggested in [3]. Our goal is to minimize fine-tuning



8 Oyamada et al.

effort while keeping computational costs manageable compared to RNNs. In this
regard, we set 10 epochs for fine-tuning LLMs and 25 for training the RNNs from
scratch. The cross-entropy loss and mean squared error (MSE) are employed as
loss functions during training for NA and RT predictions, respectively. Moreover,
the NA accuracy and the runtime for training and validation are also reported.
The entire codebase is publicly available in our repository 5

5.2 Results

Table 2: Top NA accuracy and RT MSE per
LLM with PEFT, plus total/trainable parame-
ters (RNNs: 100%) and runtime.

Dataset Backbone NA Acc. RT MSE # params
(%trainable)

Runtime
(hours)

BPI20PTC

Llama3.2 0.8517 0.8978 1.2e+09 (6%) 0.082
PM-GPT2 0.7721 1.0361 1.2e+08(0.05%) 0.008
Qwen2.5 0.8517 0.8706 6.3e+08(22%) 0.118
S-NAP 0.2351 - 1.3e+09(3%) 0.349

MT-RNN 0.6516 1.0484 8.9e+04 0.004
ST-RNN 0.8052 0.9942 2.1e+05 0.003

BPI20RfP

Llama3.2 0.8253 0.6463 1.2e+09(0.01%) 0.147
PM-GPT2 0.8429 0.6366 1.2e+08(5%) 0.002
Qwen2.5 0.8362 0.6706 4.9e+08(0.02%) 0.189
S-NAP 0.4150 - 1.3e+09(3%) 0.491

MT-RNN 0.7707 0.6456 1.3e+05 0.006
ST-RNN 0.8123 0.6446 8.6e+04 0.012

BPI20TPD

Llama3.2 0.7615 0.7663 1.2e+09(12%) 0.597
PM-GPT2 0.7454 0.9041 1.3e+08(7%) 0.055
Qwen2.5 0.7889 0.7729 6.3e+08(22%) 0.250
S-NAP 0.4204 - 1.3e+09(3%) 2.892

MT-RNN 0.7208 0.8865 9.3e+04 0.013
ST-RNN 0.7603 0.8152 1.5e+05 0.013

BPI12

Llama3.2 0.7454 0.8444 1.2e+09(12%) 1.641
PM-GPT2 0.7983 1.1405 1.3e+08(3%) 0.135
Qwen2.5 0.8162 1.0169 5.6e+08(12%) 0.922
S-NAP 0.1124 - 1.3e+09(3%) 6.033

MT-RNN 0.7904 1.4058 1.6e+06 0.016
ST-RNN 0.8358 1.4555 2.1e+05 0.011

BPI17

Llama3.2 0.8687 0.5906 1.2e+09(6%) 3.396
PM-GPT2 0.8730 0.5683 1.3e+08(3%) 0.559
Qwen2.5 0.8637 0.5932 6.3e+08(22%) 2.269
S-NAP 0.1851 - 1.3e+09(3%) 34.99

MT-RNN 0.8430 0.6613 8.9e+04 0.039
ST-RNN 0.8855 0.6862 1.4e+05 0.065

In this section, we discuss
the results of our proposed
methodology. In order to guide
the reported results, we de-
fine three research questions.
RQ1: Do LLMs fine-tuned
for process data outperform
existing methods, and what
are the associated trade-offs?
RQ2: Can LLMs effectively be
adapted to the process domain
in order to learn multiple PPM
tasks simultaneously? RQ3:
Which PEFT method works
best for the addressed PPM
tasks?

Research question 1
(RQ1). Table 2 shows, for
each backbone and dataset,
only the best scores, the to-
tal and trainable parameter
counts, and the runtime for
training and validating. Three
key insights can immediately
be extracted from these re-
sults. First, the MT-RNN setup never achieves the highest scores on any dataset,
and S-NAP is significantly outperformed for all cases. The issue with MT-RNNs
lies in the fact that we are increasing the problem complexity by predicting mul-
tiple targets at once while preserving the architectural simplicity of recurrent
networks. The lower S-NAP results seem to indicate that the semantic capabili-
ties of the employed LLM are not enough to learn process behaviors for real-world
datasets, based on activity labels alone. The low accuracies, as compared to the
original work [15], are also explained by the prompt change to not include fu-
ture information, as explained earlier (see section 3). Interestingly, at the first
trial, S-NAP achieved an accuracy of 2% for BPI12, and we noticed that this
5 https://github.com/raseidi/llm-peft-ppm

https://github.com/raseidi/llm-peft-ppm


Domain Adaptation of LLMs for Process Data 9

was due to activity labels mixed in English and Dutch, which raises another
limitation of narrative-style solutions if the employed LLM is not cross-lingual.
After manually standardizing all labels to English and retraining the model, a
significant improvement was achieved, as reported in the table. Additionally, the
ST-RNN remains a strong baseline for NA prediction: it significantly outper-
forms other models on BPI12 and outperforms, by a small margin, on BPI17.
Regarding the RT prediction, it is competitive only on BPI20RfP and is out-
performed on the other datasets. Thus, although the ST-RNN excels on selected
cases, it lacks consistency and significantly underperforms on NA for BPI20PTC
and BPI20RfP.

Second, recurrent nets use orders of magnitude fewer parameters and less
runtime than LLM-based solutions, highlighting the higher computational cost
to improve predictive performance. However, notice that the number of total
parameters differs between the different RNN setups since they were optimized
in a large hyperparameter search space (e.g., MT-RNN for BPI12 and BPI17).
Intuitively, this shows that although RNNs are smaller, they demand careful hy-
perparameter optimization. Our LLMs, especially with LoRA and the employed
default settings, require less tuning and clearly outperform RNNs and S-NAP in
both single- and multi-task setups. Still, ST-RNN in particular is a strong, low-
cost baseline for NA but not for RT, while LLMs perform well on both. S-NAP
runs slower, mainly due to the narrative-style inputs that make sequences longer.
Lastly, among the three LLMs fine-tuned for process data, PM-GPT2 achieves
the best RT performance on BPI17 and outperforms on both tasks on BPI20RfP.
However, it lacks consistency, underperforming on other datasets, unlike Llama
and Qwen, which are very stable across all datasets. Thus, we can conclude that
LLMs, when explicitly adapted to the process domain, can outperform current
methods in both single- and multi-task setups at the cost of increasing compu-
tational cost (though it is still much lower than the narrative-style S-NAP) but
decreasing the burden of hyperparameter optimization.

1

2

3

NA
 L

os
s

BPI20PrepaidTravelCosts

1

2

BPI12

1

2

BPI17

0 5 10 15 20 25
Epoch

2

4

RT
 L

os
s

0 5 10 15 20 25
Epoch

1

2

3

4

ST-RNN MT-RNN PM-GPT2 Qwen2.5 Llama3.2

0 5 10 15 20 25
Epoch

0.6

0.8

1.0

Fig. 1: Curve losses for RNNs and LLMs fine-tuned for process data.

Research question 2 (RQ2). We answer this question by assessing the
loss curves of models on both NA and RT tasks, by reporting only the best



10 Oyamada et al.

models illustrated in Figure 1. Due to the significantly lower accuracy, S-NAP
is excluded. We include only three datasets due to the lack of space, although
the behaviors were similar for all the BPI20 datasets (the remaining plots can
be found in the online repository). LLMs and ST-RNNs converge faster than
MT-RNNs on NA prediction, with LLMs needing fewer than 5 epochs. For RT
prediction, LLMs constantly outperform single- and multi-task RNNs. Moreover,
these results also highlight the difficulties of RNNs on multi-task learning, as we
can see on BPI17, where the MT-RNN converges on the NA task but underfits
for RT. It is noticeable how difficult the RT task is, regardless of the employed
backbone, as most of them exhibit spiky behavior instead of a smooth curve.
Llama excels in RT prediction, being most consistent across datasets, whereas
the other LLMs are not, showcasing that model size matters in this setup. The
particular spiky behavior presented by LLMs on the RT task is due to the
fact that these models are originally trained as classifiers. Thus, adapting these
smaller models to a regression task might require further efforts. Nevertheless,
in the multi-task setup, LLMs are capable of outperforming all the RNNs on
the RT task and performing competitively to ST-RNNs on the NA task, which
evidences their capabilities of learning both tasks at once.

0.5

0.6

0.7

0.8

NA
 A

cc
.

PM-GPT2 Qwen2.5 Llama3.2

2

4

6

8

RT
 M

SE

LoRA Freezing

(a)

0.5

0.6

0.7

0.8

NA
 A

cc
.

PM-GPT2 Qwen2.5 Llama3.2

2

4

6

8

RT
 M

SE

Freezing
Freezing-[0]
Freezing-[0,1]

Freezing-[-1]
Freezing-[-1,-2]

(b)

Fig. 2: (a) Accuracy and MSE of each PEFT for each language model on all
event logs used. (b) Accuracy and MSE for each freezing configuration on all
event logs.

Research question 3 (RQ3). Figure 2a shows the loss distribution for
LoRA and Freezing configurations across all datasets. For the NA task, all PEFTs
perform well: LoRA works better for Qwen, whereas freezing layers work better
for Llama and PM-GPT2. However, for PM-GPT2, the optimal result is achieved
by LoRA. For RT, LoRA clearly outperforms freezing. This reinforces the pre-
viously introduced idea that LLMs, trained for classification (in the form of
next token prediction), struggle with regression unless explicitly adapted. LoRA



Domain Adaptation of LLMs for Process Data 11

overcomes this limitation by adding new layers that adapt the LLM to the re-
gression task. This lowers the loss distribution for all models and emphasizes
the fact that LLMs need to be properly adapted somehow, where the insertion
of new adapter layers instead of simply fine-tuning whole layers is an effective
alternative. In Figure 2b, we provide a more detailed view by showing the loss
distributions for each setup. For NA prediction, all LLMs require a few layers
to be fine-tuned since freezing all the weights does not perform well. Although
for Qwen freezing all layers might achieve a high accuracy, it is very inconsistent
compared with the other configurations, since it has the highest variation. This
evidence shows again that LLMs are next token classifiers; hence, retaining a few
of their original layers and consequently adapting the model to the process do-
main works better. In contrast, fully freezing the model proves more effective for
RT prediction. Although this might seem counterintuitive regarding the previous
insights for NA, it highlights again the fact that LLMs are not inherently suited
for regression tasks, and the good performance is mainly driven by training only
the input and output layers.

5.3 Distinctions, Limitations, and Future Directions

This work introduces modern fine-tuning techniques to adapt LLMs to the pro-
cess domain, aiming to reduce the reliance on prompt engineering or narrative-
style reformulations. Instead, we use PEFT to explicitly teach process-specific
patterns, going beyond general reasoning abilities. A valuable insight from our
experiments includes the ease with which these models present to perform next
token classification, more in line with their original training objectives, whereas
they might struggle with regression tasks. Still, our approach outperforms ex-
isting solutions, based on both RNNs and prompt engineering, suggesting that
targeted adaptations are effective and necessary to bridge this performance gap.
These results are much faster than narrative-style approaches, even when us-
ing open-source, lightweight models, which make them suitable for production.
The speed-up comes from avoiding long prompt-based inputs, which slow down
inference. Still, some limitations remain. While PEFT reduces cost, it requires
more trainable parameters than RNNs; future work could explore quantization
to shrink models further. Key tasks like process discovery and anomaly detec-
tion remain challenging due to their mismatch with standard training formats.
Finally, we used LoRA with default settings, which could be tuned to reduce
memory usage.

6 Conclusion

This study systematically evaluates fine-tuning methods for adapting LLMs to
predictive process monitoring. Unlike prior works that mainly focus on LLMs’
abilities to understand language semantics, we focus on domain adaptation
through fine-tuning to directly use process event data. By going beyond prompts
and narratives, our results show that fine-tuned LLMs can outperform traditional



12 Oyamada et al.

PPM models and narrative-style approaches in both single- and multi-task NA
and RT prediction.

References

1. Berti, A., Kourani, H., van der Aalst, W.M.P.: Pm-llm-benchmark: Evaluating
large language models on process mining tasks. In: ICPM Workshops (2025)

2. Berti, A., Kourani, H., Häfke, H., Li, C., Schuster, D.: Evaluating large language
models in process mining: Capabilities, benchmarks, and evaluation strategies. In:
BPMDS and EMMSAD (2024)

3. Biderman, D., Ortiz, J.J.G., Portes, J.P., Paul, M., Greengard, P., Jennings, C.,
King, D., Havens, S., Chiley, V., Frankle, J., Blakeney, C., Cunningham, J.P.: Lora
learns less and forgets less. CoRR (2024)

4. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen,
W.: Lora: Low-rank adaptation of large language models. In: ICLR (2022)

5. Ketykó, I., Mannhardt, F., Hassani, M., van Dongen, B.F.: What averages do not
tell: predicting real life processes with sequential deep learning. In: SAC (2022)

6. Kubrak, K., Botchorishvili, L., Milani, F., Nolte, A., Dumas, M.: Explanatory
capabilities of large language models in prescriptive process monitoring. In: BPM
(2024)

7. Lashkevich, K., Milani, F., Avramenko, M., Dumas, M.: Llm-assisted optimization
of waiting time in business processes: A prompting method. In: BPM (2024)

8. Lu, Y., Bartolo, M., Moore, A., Riedel, S., Stenetorp, P.: Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity.
In: ACL (2022)

9. van Luijken, M., Ketykó, I., Mannhardt, F.: An experiment on transfer learning
for suffix prediction on event logs. In: BPM Workshops (2023)

10. Mahowald, K., Ivanova, A.A., Blank, I.A., Kanwisher, N., Tenenbaum, J.B., Fe-
dorenko, E.: Dissociating language and thought in large language models. Trends
in Cognitive Sciences (2024)

11. Oyamada, R.S., Tavares, G.M., Junior, S.B., Ceravolo, P.: Enhancing predictive
process monitoring with time-related feature engineering. In: CAiSE. LNCS (2024)

12. Pasquadibisceglie, V., Appice, A., Malerba, D.: LUPIN: A LLM approach for ac-
tivity suffix prediction in business process event logs. In: ICPM (2024)

13. Petrov, A., Torr, P., Bibi, A.: When do prompting and prefix-tuning work? A
theory of capabilities and limitations. In: ICLR (2024)

14. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep learning for predictive business
process monitoring: Review and benchmark. IEEE TSC (2023)

15. Rebmann, A., Schmidt, F.D., Glavas, G., van der Aa, H.: Evaluating the ability of
llms to solve semantics-aware process mining tasks. In: ICPM (2024)

16. Roider, J., Zanca, D., Eskofier, B.M.: Efficient training of recurrent neural networks
for remaining time prediction in predictive process monitoring. In: BPM (2024)

17. Sclar, M., Choi, Y., Tsvetkov, Y., Suhr, A.: Quantifying language models’ sensi-
tivity to spurious features in prompt design or: How I learned to start worrying
about prompt formatting. In: ICLR (2024)

18. Tax, N., Verenich, I., Rosa, M.L., Dumas, M.: Predictive business process moni-
toring with LSTM neural networks. In: CAiSE (2017)

19. Weytjens, H., Weerdt, J.D.: Creating unbiased public benchmark datasets with
data leakage prevention for predictive process monitoring. In: BPM (2021)


	Domain Adaptation of LLMs for Process Data

