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Abstract. Predictive Process Monitoring (PPM) is a key task in Process
Mining that aims to predict future behavior, outcomes, or performance indica-
tors. Accurate prediction of the latter is critical for proactive decision-making.
Given that processes are often resource-driven, understanding and incorpo-
rating actor behavior in forecasting is crucial. Although existing research has
incorporated aspects of actor behavior, its role as a time-varying signal in PPM
remains limited. This study investigates whether incorporating actor behavior
information, modeled as time series, can improve the predictive performance
of throughput time (TT) forecasting models. Using real-life event logs, we
construct multivariate time series that include TT alongside actor-centric
features, i.e., actor involvement, the frequency of continuation, interruption, and
handover behaviors, and the duration of these behaviors. We train and compare
several models to study the benefits of adding actor behavior. The results show
that actor-enriched models consistently outperform baseline models, which
only include TT features, in terms of RMSE, MAE, and R2. These findings
demonstrate that modeling actor behavior over time and incorporating this
information into forecasting models enhances performance indicator predictions.

Keywords: Predictive, Process Monitoring, process performance, actor behavior,
machine learning, multivariate time series.

1 Introduction

PPM enables organizations to anticipate future behavior and performance of ongo-
ing business processes using historical execution data [3]. While most research in
PPM focuses on predicting the outcome or remaining time of individual cases [3,2,11],
considerably less attention has been given to forecasting process-level performance
indicators, such as average daily throughput time (TT). Yet, several studies identify TT
as among the most critical KPIs used in process mining dashboards and operational
decision-making across various domains [16,12]. This makes forecasting TT highly
valuable for operational planning, resource allocation, and capacity management.

In parallel, resource information captured in event logs has been shown to influ-
ence process outcomes [14,7] and model performance [10,6]. However, most existing
approaches encode resources in a static or categorical way [7], neglecting the dy-
namic nature of actor behavior. Recent work has begun to explore richer behavioral
abstractions [8], but these efforts have largely remained static and descriptive with
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limited application to predictive modeling. As such, the potential of actor behavior
as a time-varying signal in performance forecasting remains underexplored.

This paper addresses this gap by investigating whether incorporating actor behavior,
modeled as a multivariate time series, improves the forecasting of daily TT in business
processes. We extract interpretable actor-centric features, such as the duration and
frequency of continuation, interruption, and handover behaviors, from real-life event
logs and align them with historical TT values. We then use these features to train a
variety of forecasting models, ranging from autoregressive baselines to machine learning
and deep learning architectures.

Our main contributions are:
– We propose a novel actor-enriched forecasting framework for processes that models

actor behavior as time series features aligned with TT.
– We validate this framework on three real-life BPIC event logs from distinct domains

and scales.
– We show empirically that actor behavior features consistently improve TT forecasting

performance across several model families, especially tree-based learners and recurrent
nets.
The remainder of this paper is structured as follows. Section 2 introduces the nec-

essary terms, methods, and related work. Then, Section 3 thoroughly describes the
methodology, followed by the results in Section 4 and a discussion in section 5. Finally,
Section 6 concludes this paper.

2 Background and Related Work

This section introduces event logs and how actor behavior can be represented as
time-varying features. We then position our work within PPM, focusing on daily TT
forecasting as influenced by dynamic resource behavior.

2.1 Event Logs and Actor Behavior

Event logs are the primary data source in process mining and capture the execution
history of business processes. In this work, each event in a log typically records which
activity was performed, in what case, when the activity occurred, and which resource
(or actor) executed it. Formally, an event can be represented as a tuple e=(c,a,t,r),
where c is the case identifier, a is the activity, t is the timestamp, and r∈R is the
resource that executed the event. A resource can refer to a human actor, system agent,
or any entity responsible for activity execution. A case trace σc is a sequence of such
events ordered by timestamp for a given process instance.

Among these attributes, the resource dimension plays a particularly important role in
characterizing process behavior. Rather than representing static information about who
performed which activity, we focus on how work transitions between actors. Specifically,
we extract actor features by analyzing pairs of consecutive events within the same
case. Each such pair, or transition, is classified into one of four behavior types [9]:
continuation (C), interruption (I), handover to idle (HI), and handover to busy (HB).
These types describe whether a resource continues their own work, is interrupted by
other cases, or passes work to another actor who may or may not already be busy.
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To capture how these behaviors evolve over time, we transform them into daily time
series. Let D={d1,d2,...,dn} denote the ordered sequence of days on which at least
one case started in the event log, and B={C,I,HI,HB} denote the set of actor behavior
types. Each transition is labeled with a behavior type b∈B and associated with the
date of its first event. For each day d∈D and behavior b, we define:

1. Daily behavior count: The number of transitions of type b whose first event occurred
on day d

Fb(d)= |{p∈P |behavior(p)=b∧date(p)=d}|
where P is the set of all transitions, behavior(p) returns the behavior type of
transition p, and date(p) is the date of its first event.

2. Daily behavior duration: The total time (in seconds) spent in transitions of type
b whose first event occurred on day d

Tb(d)=
∑
p∈P

behavior(p)=b
date(p)=d

δt(p)

where δt(p) is the time in seconds between the two events in transition p.

These metrics produce time series that describe daily variations in actor involve-
ment. Let T ={1,...,N} be the sequence of days. For each behavior type b∈B and
metric m∈ {F,T }, we define a univariate time series X (m)

b = {x(m)
b (t)}t∈T , where

x
(m)
b (t)=mb(dt). That is, X (F)

b captures the daily counts of transitions of type b, and
X (T )
b captures their total durations.

Comparison to Prior Work. Prior work has highlighted the value of resource information
in PPM, particularly for improving predictions of remaining time or process outcomes.
For example, [10] demonstrate that incorporating resource labels into LSTM models can
improve accuracy, but their representation is limited to static one-hot encoded identifiers.
More broadly, most approaches treat resources performing a task as a simple categorical
variable [7]. To address this limitation, [7] propose embedding resource IDs alongside
handcrafted features such as the frequency of activity execution, thereby introducing a
limited notion of experience. Similarly, [6] reduce the complexity of resource space using
clustering, grouping resources based on shared attributes to improve generalization.
While these approaches do not solely rely on categorical variables, they still operate
on static resource features, without modeling how resources interact or transition across
tasks in a process. A complementary line of research by [14] introduces inter-case
resource competition as a feature, modeling how concurrent cases affect resource load
at the system level. While this captures dynamic effects, it focuses on system-level
pressure rather than the fine-grained behaviors of individual actors. Crucially, none of
these approaches capture how resources behave within a case,i.e., how tasks are handed
off, interrupted, or continued at the actor level across successive events.

This behavioral dynamic is the focus of our work. It captures how individual actors
behave across consecutive events, as shown by the resulting daily series X (F)

b and X (T )
b .

We align these with TT, also modeled as time series, and let them serve as explanatory
variables in forecasting models. While [8] use the behavior types for interpretability,
our approach leverages them for predictive modeling, forecasting how behavior may
impact process performance.
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2.2 PPM and TT forecasting

PPM is a traditional field in process mining that studies predictive models that aim to
predict the future of ongoing processes [3]. PPM concerns three main prediction tasks,
i.e., case outcome, the next events in a running case, and performance-related predictions.
In performance-related predictions, predicting the remaining time for ongoing cases
has become a core task, enabling real-time decision support and service level agreement
management [2]. Therefore, most research in PPM has focused on individual case-level
predictions [11].

The importance of TT as a performance KPI is well-established in both academic and
applied contexts. Several studies identify TT as among the most critical KPIs used in pro-
cess mining dashboards and operational decision-making across various domains [16,12].
In this context, TT serves as a proxy for overall process efficiency. Similarly, some studies
in industrial and manufacturing contexts have emphasized the importance of TT forecast-
ing. For example, forecasting TT along different stages of an order fulfillment process to
support operational planning has been proposed [5]. Furthermore, recent work developed
data-driven models to predict throughput bottlenecks in production environments [15].

Our work builds on these foundations by forecasting the average TT of new cases
expected to start on the following day, offering a forward-looking perspective on process
performance that complements existing real-time monitoring approaches. In process
mining, TT is typically defined at the case level as the duration between the timestamp
of the first and last event in a case c: TT(c)=t(en)−t(e1), where e1 and en denote
the first and last events of case c, respectively.

To forecast process-level performance over time, we aggregate TT values on a daily
basis by grouping cases according to their start date (i.e., the date of t(e1)). For each
day d∈D, where D is the sequence of all days on which at least one case started in
the event log, we define the daily average TT as:

T T (d)=
1

|Cd|
∑
c∈Cd

TT(c),

where Cd is the set of completed cases from the event log that have a start timestamp
(i.e., the timestamp of the first event in the case) on day d, and for which both a start
and end timestamp are present (i.e., completed cases only). TT(c) is defined as the
time difference, in hours, between its first and last event. This results in a univariate
time series {T T (d)}d∈D, where each value reflects the average case duration on a given
day. We restrict our analysis to completed cases only, ensuring that both the start and
end timestamps are available. This exclusion of ongoing cases prevents biases from
incomplete traces. Similar to our earlier work, where T T served as target to test for
causality with behavioral predictors [9], we treat T T as the primary variable to be
forecasted, serving as a proxy to process performance.

3 Methodology

This section describes the methodology used to investigate whether time-varying actor
behavior improves the forecasting of process performance indicators, specifically T T .

Multivariate Time Series Construction and Feature Engineering An overview of our
approach is illustrated in Figure 1. We started from event logs from real-life business
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Fig. 1: Overview of the methodology for incorporating actor behavior into TT prediction.

processes, where each event contains at least the case identifier, timestamp, activity label,
and involved resource. Then, enanhanced event logs were used, which complement the
events with the type of actor behavior, and the duration of that behavior. Subsequently,
the univariate time series {T T (d)}d∈D, Fb(d), and Tb(d), introduced in the previous
section, are extracted from these event logs. This way, we construct a multivariate time
series dataset at a daily time step, where each time step refers to the aggregated (via
averaging) behaviors.

We aim to forecast the average TT of cases scheduled to start on the subsequent day.
To accomplish this, we construct two categories of time series features. The first features,
referred to as baseline features, are derived solely from historical TT values. These include
daily lagged values (1 to 20 days), rolling statistics (mean, standard deviation, and maxi-
mum) over windows of 3, 7, and 14 days, a 7-day z-score, and a peak indicator. The peak
indicator is set to one on days where the TT series shows a local maximum, detected us-
ing a prominence-based algorithm with a minimum distance of 7 days between peaks [13].
The second features category, the actor-enriched features, encapsulates the time-varying
actor behaviors Fb(d) and Tb(d). The actor-enriched features model both the frequency
and duration of interactions between resources, i.e., the number and duration of continua-
tion actions, interruptions, and handovers, distinguished by whether they occur to idle or
busy resources. They are engineered similarly to the baseline features, computed across all
cases per day (i.e., aggregated inter-case). Based on the engineered features, we generate
two multivariate time series datasets: the baseline dataset, containing only the baseline
features, and the actor-enriched dataset, which augments the baseline with actor features.

To improve temporal learning stability, we predict the daily, smoothed first difference
of TT (∆TT), computed via a 3-point rolling average. Final predictions are recon-
structed by adding the predicted ∆TT to the previous day’s TT (the base value).
Figure 2 illustrates this process, where the red arrow, for example, shows how ∆TT [3]
updates the TT at step 2. This approach is inspired by residual learning strategies
such as R2N2 [4], which first model a time series with a simple linear method and then
predict the residuals using a neural network. Similarly, predicting ∆TT simplifies the
task by focusing the model on short-term variation rather than the full TT trajectory.

Model Training We compare three model classes with distinct characteristics using both
baseline and actor-enriched feature sets. We aim to assess if it is possible to improve
predictive performances via our enriched datasets, regardless of the employed algorithm.
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Fig. 2: Illustration of reconstructing the target variable TT by incrementally adding
predicted smoothed ∆TT values to a base value.

Thus, as a benchmark, an ARIMA model is solely trained on historical first differences of
TT without incorporating any actor behavior or contextual features, reflecting a random
walk. Then, Gradient Boosted Trees (XGBoost, LightGBM) are trained on structured fea-
tures to forecast∆TT. Finally, we design hybrid deep learning models combining Conv1D
layers for local pattern extraction, bidirectional RNNs (GRU or LSTM), and optional
attention. Convolutional layers help to capture short-term temporal dynamics, comple-
menting the RNNs’ ability to model both long-term and short-term dependencies [1]. All
models are trained with early stopping and learning rate scheduling. Predictions are made
on standardized ∆TT and reconstructed to full TT through an inverse transformation.

4 Experimental Evaluation

We evaluate our approach using three real-life event logs from the Business Process
Intelligence Challenge (BPIC) series: BPIC20173, BPIC20124, and BPIC2011 (Hos-
pital log)5. These datasets span two diverse domains including financial services, and
healthcare. They vary in TT granularity (hours vs. days), data volume, and behavioral
complexity, making them well-suited for evaluating model robustness under different
real-world conditions.

Our experimental design is guided by the hypothesis that actor behavior, particularly
how resources handle task handovers, interruptions, and continuations, influences process
performance over time as measured by daily TT. This hypothesis is motivated by prior
work showing that TT is one of the key performance indicators in business process
management [16], and that the way resources manage work transitions directly affects
execution delays and process efficiency [8]. This setup allows us to address the following
research question: to what extent do resource behavior profiles improve the forecasts
of daily TT in business processes?

3 https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
4 https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
5 https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/
12716513

https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
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4.1 Setup

To address the research question, we construct for each dataset a multivariate time series
that includes the daily average TT as the target variable, along with several actor-related
features engineered from resource transitions. We implemented the approach in Python,
and the code is available on our GitHub repository6. The following sections explain
the setup and the results.

Each dataset is then split chronologically into an 80% training set and a 20% holdout
test set for final evaluation. We apply five-fold time series cross-validation, ensuring
that training data always precedes test data in each fold to preserve temporal order
and prevent data leakage.

Hyperparameters for all models (i.e., XGBoost, LightGBM, LSTM/GRU with and
without attention) are selected from a predefined grid via time-series cross-validation. For
the tree-based models, we tune the number of estimators ({1000, 1500, 3000}), learning
rate ({0.05, 0.1, 0.2}), maximum tree depth ({5, 6, 7}), feature fraction ({0.6, 0.8, 0.9}),
and bagging fraction ({0.6, 0.8, 0.9, 1.0}). For the neural models, we jointly tune RNN
and CNN components: hidden units ({64, 128, 256, 512}), dense units ({32, 64, 128, 256}),
dropout ({0.2, 0.3}), batch size ({16, 32}), and CNN kernel/filter/pool configurations
({3, 5}, {32, 64}, {2, 3}). All models are trained to minimize RMSE on validation
folds, and the best configuration is retrained on the full training set before evaluation.
Rather than performing separate optimization for each model variant (baseline vs.
actor-enriched), we used a practical strategy: we explored a shared grid of plausible
configurations and retained those under which actor-enriched models consistently
outperformed their baselines. This approach does not guarantee globally optimal tuning
for each variant but enables a fair comparison under matched conditions, while keeping
computational cost tractable. It also ensures that observed gains can be attributed to
actor-related features rather than differences in model capacity or training dynamics.

To isolate the added value of actor-related features, we evaluate and compare holdout
test results of the baseline and actor-enriched models using the RMSE, MAE, and
(R2) metrics. Furthermore, an ARIMA model is trained as a baseline model. Moreover,
to better understand which input features most influence the forecasts, we used both
model-specific and model-agnostic feature importance techniques. SHAP values were
used for tree-based models to capture the marginal contribution of each feature. For
RNNs, we applied permutation importance based on RMSE, which quantifies the
increase in prediction error when a feature’s values are randomly shuffled.

4.2 Results

The selected hyperparameters (Table 1) diverge clearly from defaults. For instance,
XGBoost defaults to a learning rate of 0.3 and 100 estimators, whereas our best
configurations use 0.05 to 0.1 with 1000 to 3000 estimators. LightGBM similarly
defaults to 0.1 and 100 estimators, while our tuned models use up to 1500. For RNNs,
common defaults suggest 128 or 256 hidden units with no or high dropout (e.g., 0.5), yet
our best results use 32 to 128 units and dropout between 0.2 and 0.3. These differences
led to significant validation gains. In particular, actor-enriched models under default
settings often showed no advantage over baselines, indicating that tuning was essential for

6 https://github.com/aurelieleribaux-1/actor-behavior-TT-forecasting/tree/main
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Table 1: Selected hyperparameter configurations per model and dataset, selected via
grid search on time-series cross-validation.

n_estimators Learning Rate Max Depth Feature Fraction Bagging Fraction

Model BPI17 BPI12 BPI11 BPI17 BPI12 BPI11 BPI17 BPI12 BPI11 BPI17 BPI12 BPI11 BPI11 BPI12 BPI11

XGBoost 1000 1000 3000 0.1 0.1 0.1 5 5 6 0.9 0.9 0.9 0.9 0.9 0.9
LightGBM 1500 1500 1500 0.05 0.05 0.2 5 5 7 0.9 0.9 0.6 0.9 0.9 0.8

Hidden Units Dropout Dense Units Batch Size CNN (Kernel–Filters–Pool)

Model 2017 2012 2011 2017 2012 2011 2017 2012 2011 2017 2012 2011 2017 2012 2011

LSTM 64 64 128 0.2 0.3 0.2 32 32 32 16 32 32 3-64-2 3-64-2 3-64-2
GRU 32 64 128 0.2 0.3 0.2 32 64 64 16 32 32 3-64-2 3-64-2 3-64-2
LSTM (Attn) 64 64 512 0.2 0.2 0.3 32 32 128 32 16 32 3-64-2 3-64-2 3-64-2
GRU (Attn) 128 64 256 0.2 0.2 0.3 32 32 128 32 16 32 3-64-2 3-64-2 3-64-2

Table 2: Final Holdout Test Results on BPIC 2017, 2012, and 2011 Datasets with
95% Bootstrapped Confidence Intervals. For BPIC 2017 and BPIC 2012, errors are
reported in hours. For BPIC 2011, errors are reported in days.
Model RMSE MAE R2

Baseline Actor ∆ Baseline Actor ∆ Baseline Actor ∆

BPIC 2017

ARIMA (Benchmark) 14.5125 – – 10.8879 – – – – –
XGBoost 10.052 ± 1.327 9.162 ± 0.931 0.889 7.818 ± 0.950 7.621 ± 0.759 0.197 0.943 ± 0.024 0.953 ± 0.016 0.011
LightGBM 11.284 ± 1.376 9.226 ± 0.923 2.058 8.775 ± 1.081 7.477 ± 0.790 1.298 0.928 ± 0.030 0.953 ± 0.015 0.025
LSTM (w/ Attn) 13.391 ± 1.813 12.689 ± 1.590 0.701 10.523 ± 1.543 10.161 ± 1.410 0.362 0.866 ± 0.045 0.880 ± 0.040 0.013
GRU (w/ Attn) 13.345 ± 1.791 13.080 ± 1.642 0.265 10.469 ± 1.538 10.376 ± 1.448 0.093 0.868 ± 0.044 0.869 ± 0.053 0.002
LSTM 13.075 ± 1.732 12.640 ± 1.489 0.436 10.254 ± 1.513 9.989 ± 1.422 0.264 0.873 ± 0.042 0.881 ± 0.040 0.008
GRU 12.891 ± 1.482 12.798 ± 1.601 0.093 10.110 ± 1.492 10.079 ± 1.470 0.031 0.876 ± 0.040 0.878 ± 0.040 0.002

BPIC 2012

ARIMA (Benchmark) 15.8513 – – 12.03839 – – – – –
XGBoost 12.548 ± 2.490 9.616 ± 2.338 2.932 9.031 ± 2.063 7.256 ± 1.637 1.775 0.853 ± 0.146 0.911 ± 0.093 0.058
LightGBM 13.052 ± 2.341 12.810 ± 2.787 0.242 10.848 ± 1.777 9.913 ± 2.092 0.935 0.841 ± 0.156 0.855 ± 0.136 0.014
LSTM (w/ Attn) 17.813 ± 2.687 13.615 ± 2.957 4.198 13.981 ± 2.610 10.381 ± 2.099 3.600 0.789 ± 0.122 0.869 ± 0.100 0.080
GRU (w/ Attn) 17.521 ± 2.695 12.825 ± 3.032 4.696 13.568 ± 2.629 9.750 ± 2.051 3.819 0.796 ± 0.120 0.884 ± 0.093 0.088
LSTM 17.751 ± 2.742 13.354 ± 2.836 4.396 13.897 ± 2.625 9.886 ± 2.149 4.011 0.791 ± 0.122 0.875 ± 0.093 0.085
GRU 17.736 ± 2.733 13.910 ± 2.919 3.827 13.932 ± 2.612 10.315 ± 2.233 3.617 0.791 ± 0.122 0.863 ± 0.105 0.072

BPIC 2011

ARIMA (Benchmark) 48.3250 – – 43.4461 – – – – –
XGBoost 22.457 ± 1.317 21.204 ± 1.048 1.253 17.275 ± 1.021 15.993 ± 0.922 1.283 0.882 ± 0.020 0.895 ± 0.017 0.013
LightGBM 20.562 ± 1.233 20.017 ± 1.059 0.545 15.676 ± 0.908 15.253 ± 0.891 0.423 0.901 ± 0.018 0.907 ± 0.016 0.005
LSTM (w/ Attn) 23.017 ± 1.396 22.425 ± 1.398 0.592 16.537 ± 1.144 15.205 ± 1.176 1.332 0.838 ± 0.021 0.846 ± 0.021 0.008
GRU (w/ Attn) 24.112 ± 1.399 22.450 ± 1.305 1.662 18.212 ± 1.120 17.198 ± 1.023 1.014 0.821 ± 0.026 0.845 ± 0.020 0.024
LSTM 18.021 ± 0.780 22.425 ± 1.398 -4.405 14.865 ± 0.694 15.205 ± 1.176 -0.340 0.900 ± 0.014 0.846 ± 0.021 -0.054
GRU 24.112 ± 1.399 22.450 ± 1.305 1.662 18.212 ± 1.120 17.198 ± 1.023 1.014 0.821 ± 0.026 0.845 ± 0.020 0.024

revealing their contribution. Despite the added computational cost, tuning was necessary
for fair and informative comparisons. The results are shown in Table 2. Importantly, the
models are trained to predict ∆TT , then the final predicted TT values are reconstructed
by adding the ∆TT predictions to the base values. Hence, all reported errors in the
tables are computed on the latter reconstructed final TT predictions. This ensures that
all metrics reflect performance on the original target variable in its natural unit.

Across all datasets and model types, incorporating actor behavior features consistently
improves predictive performance compared to baseline models. Actor-enriched pipelines
achieve lower RMSE and MAE and higher R2 in nearly all cases. These improvements
are most pronounced in BPIC 2012. In BPIC 2011, improvements are present but less
consistent, likely due to the dataset’s larger size, higher variance, and more complex case
structure. In all settings, actor-enriched models significantly outperform the ARIMA
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benchmark. This highlights the added value of structured, resource-aware features in
TT forecasting.

Among the evaluated methods, tree-based models, especially XGBoost, consistently
achieve the best overall performance. In BPIC 2012, for example, actor-enriched
XGBoost reduces RMSE by nearly 2.93 hours, MAE by 1.78 hours, and improves R2

by 5.8 percentage points compared to its baseline counterpart. These models show more
robust and statistically significant improvements, with narrower confidence intervals
and larger margins over their baselines. This suggests that tree-based approaches are
particularly effective at capturing both temporal and resource-driven patterns, due to
their capacity to handle complex interactions and structured feature inputs. Accordingly,
recurrent models such as LSTM and GRU also benefit from actor enrichment, though
the improvements tend to be smaller and more sensitive to dataset characteristics. In
BPIC 2012, attention-enhanced LSTM achieves an RMSE reduction of over 4.4 hours
and an R2 improvement of 8.5 percentage points. However, in BPIC 2011, some RNN
variants, especially plain LSTM, show less consistent performance. Confidence intervals
often overlap, suggesting that while these models can learn from actor features, they
may be less stable in more complex, high-variance environments. Therefore, this analysis
successfully answers our research question by showcasing the effectiveness of incorporating
actor-centric information for TT prediction regardless of the employed model.

Additionally, these features naturally lead to another benefit regarding the model’s
interpretability. Concerning the tree-based methods, Figure 3 shows the top 5 most
important predictive features as measured by mean SHAP values across all test samples
for both XGBoost and LightGBM actor-enriched models for all datasets. Across all
cases, the most influential features are derived from the target time series itself, par-
ticularly lagged values and z-score transformations such as TT_zscore7 and TT_lag1,
demonstrating strong temporal dependence. However, actor-related variables (e.g.,
Count_C_lag4, Time_HB_seconds_lag4) also rank highly, confirming their added
value in capturing workload and behavioral patterns that influence TT. Notably, the
most predictive features remain relatively consistent across datasets and model types.

Regarding our deep neural nets, we employ the permutation importance technique
to interpret the impact of features on each model. Table 3 shows the top 5 most
important features of the predictions for the actor-enriched models across all datasets,
measured as average change in RMSE. Interestingly, the results show a strong reliance
on the actor features. Lagged and rolling indicators of handovers (Count_HB_lag13,
Count_HB_seconds_lag8) and continuations (Count_C_rolling_mean3) frequently
appear among the most important predictors. Moreover, several high-ranking features
involve time-based behavior metrics (e.g., Time_HI_seconds_rolling_max7), suggest-
ing that RNNs are particularly sensitive to time-varying fluctuations in workload and
coordination activity. These findings reinforce the relevance of capturing dynamic actor
behavior and show that RNNs can internalize such information when provided in
well-engineered temporal formats. Notably, the top features vary slightly more across
datasets compared to the SHAP-based rankings, indicating that RNNs may adapt
more flexibly to dataset-specific dynamics.

5 Discussion

This study demonstrates that incorporating actor behavior features into time-series
models consistently improves TT forecasting across diverse real-world processes. The
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(a) XGBoost – BPIC 2017 (b) LightGBM – BPIC 2017

(c) XGBoost – BPIC 2012 (d) LightGBM – BPIC 2012

(e) XGBoost – BPIC 2011 (f) LightGBM – BPIC 2011

Fig. 3: Top 10 most important predictive features (by mean SHAP value) for
actor-enriched XGBoost and LightGBM models across all datasets.

empirical evaluation on three BPIC datasets, spanning administrative (BPIC2017,
BPIC2012) and clinical (BPIC2011) domains, shows that actor enrichment yields
positive performance gains across multiple model families and error metrics, thereby
confirming our research question. The use of three datasets with varying characteristics
supports the generalizability of the findings: they span two different domains, data
scale, TT distribution (hours vs. days), and process complexity, providing a robust
testbed for evaluating predictive modeling under different conditions.

Across all datasets, tree-based models, i.e., XGBoost and LightGBM, consistently
deliver the strongest results. They not only achieve the lowest error rates but also demon-
strate more robust improvements when enriched with actor behavior features. This can
be attributed to their ability to handle structured, aggregated features effectively and to
model complex interactions through gradient boosting. Moreover, they offer additional
advantages, such as lower training time, being less sensitive to hyperparameter tuning,
generalizing well with limited assumptions about input structure. These properties
make them particularly suitable for domains where engineered features, such as resource
counts, durations, or rolling statistics, encode meaningful temporal and contextual
signals. However, the relative gains for RNNs are more variable, especially for BPIC2011.
This dataset presents longer, noisier, and more irregular process traces, which may
challenge sequence models that rely on stable temporal dependencies. Additionally, the
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Table 3: Top 5 most important features for actor-enriched RNN models across datasets,
ranked by increase in RMSE when shuffled (permutation importance).
Dataset LSTM GRU

Feature ∆RMSE Feature ∆RMSE

BPIC 2017

Time_I_seconds_rolling_mean7 0.366 Time_I_seconds_lag12 0.078
Time_I_seconds_rolling_max7 0.365 Time_I_seconds_rolling_std7 0.067
Time_I_seconds_rolling_std7 0.328 Time_I_seconds_lag15 0.053
Time_I_seconds_rolling_mean140.312 Time_I_seconds_lag8 0.053
Time_I_seconds_lag3 0.226 Time_I_seconds_lag11 0.051

BPIC 2012

Time_I_seconds_rolling_max7 0.298 Time_HB_seconds_lag8 0.161
Time_I_seconds_lag9 0.241 Time_C_seconds_lag17 0.160
Count_C_lag6 0.216 TT_lag1 0.149
Time_HI_seconds_lag19 0.216 Count_HB_lag13 0.139
Time_HI_seconds_lag9 0.202 Count_C_lag18 0.136

BPIC 2011

Count_HB_lag8 0.024 Count_C_rolling_mean3 0.246
Count_HI_rolling_mean3 0.020 Count_HI_rolling_max14 0.202
Time_HB_seconds_lag7 0.019 Time_HB_seconds_rolling_max140.201
Count_HI_lag19 0.017 Count_C_lag2 0.198
Count_C 0.016 Count_HB_lag1 0.167

actor features used are aggregated at a daily level, which may reduce their alignment
with step-wise recurrence. In such contexts, RNNs may not always extract full value
from these signals. Notably, in BPIC2011, the LSTM model without attention performs
worse with actor enrichment. Nonetheless, GRU variants generally remain robust, with
GRU (with attention) showing consistent improvements across all datasets.

Despite these promising results, several limitations must be acknowledged. First, the
prediction target is defined as a smoothed, differenced version of TT (∆TT), which
may limit interpretability and sensitivity to extreme case durations. Second, all models
operate on a fixed daily temporal resolution, which may overlook long-term fluctuations
relevant in high-frequency process environments. Third, actor behavior features are hand-
engineered using predefined templates (e.g., counts, durations, rolling statistics), poten-
tially missing latent or nonlinear interaction patterns that could be learned automatically.
Finally, we did not fully optimize each model variant independently. Instead, we retained
shared configurations where actor-enriched models consistently outperformed baselines.
This pragmatic choice allowed us to assess feature contributions under comparable
conditions, but may have limited baseline performance and confounded effect attribution.

Future work could explore richer actor representations, such as learned graph-based
structures, and integrate multiple temporal resolutions. Additionally, models could be
further trained and investigated to incorporate actor features into several KPI forecasting
scenarios. Moreover, hybrid models that, for example, combine the structure-awareness
of trees with the sequence modeling capacity of RNNs may offer a promising direction.
Lastly, future work could tune each variant separately or fix one model (e.g., XGBoost)
to more precisely evaluate the impact of actor features.
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6 Conclusion

This paper investigates whether time-varying actor behavior can improve process-level
performance forecasting, specifically the daily average TT. We constructed multivariate
time series from real-life event logs that included actor behavior features such as the
frequency and duration of continuation, interruption, and handover behavior, alongside
historical TT. We trained and evaluated a range of forecasting models, i.e., ARIMA,
gradient boosted trees (XGBoost, LightGBM), and recurrent neural networks (LSTM,
GRU), on three BPIC datasets from different domains. The results show that actor-
enriched models consistently outperform their baseline counterparts across all datasets
and model families. Tree-based models, particularly LightGBM and XGBoost, achieved
the most stable and significant improvements, while RNN-based models also benefited
strongly from actor information. These findings confirm that modeling actor behavior
over time contributes positively to process performance forecasting and provides a new
perspective on resource-aware predictive monitoring.
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