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Abstract. Process mining provides insights from event logs but shar-
ing data across organizations is often restricted by privacy and legal
concerns. We propose a cross-silo federated learning (FL) framework
that combines ProM-based local preprocessing with RNN-based predic-
tion, where model updates are aggregated via FedAvg without exposing
raw logs. Experiments show accuracy close to centralized training while
maintaining strict data isolation, establishing a scalable foundation for
privacy-preserving, collaborative process intelligence.
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1 Introduction

Process Mining (PM) combines data mining and business process management
to support tasks such as discovery, conformance checking, and augmentation [1].
Recent advances in machine learning (ML) have enhanced PM with capabil-
ities like anomaly detection, log lifting, clustering, and real-time analysis [2],
but raise challenges of privacy, scalability, and collaboration. Predictive process
monitoring increasingly relies on sensitive, distributed data [3]. Federated Learn-
ing (FL) addresses these concerns by enabling cross-silo model training without
sharing raw logs. Our framework integrates ProM-based preprocessing with deep
sequence learning to support accurate, privacy-preserving, and collaborative pro-
cess prediction.
This paper makes the following key contributions:

— We propose a cross-silo federated learning framework for predictive process
monitoring that preserves event log privacy while enabling collaborative train-
ing.

— Our modular pipeline combines ProM-based local preprocessing with deep
sequence encoders to ensure semantic consistency across heterogeneous silos.

— We evaluate the approach on synthetic and real-world logs, showing accuracy
close to centralized baselines while preserving privacy and analyzing commu-
nication—performance trade-offs.
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2 Related Work

PM links data science and business process management, supporting discov-
ery, conformance, and enhancement [4]. Predictive monitoring extends this to
forecasting outcomes such as next activity [5], remaining time [6], or compli-
ance. While ML and deep learning improve accuracy [7,8], they typically rely on
centralized data, limiting applicability in privacy-sensitive, multi-organizational
settings. The PI Engine [9] addresses this gap by integrating ML and AT into PM
for proactive analysis. FL [10] enables decentralized training by sharing model
updates instead of raw data, with variants like FedAvg, FedProx, and FedOpt
tackling heterogeneity. Though successful in healthcare and finance [11], its in-
tegration into PM remains limited. Privacy-preserving approaches such as log
anonymization [12] and secure multiparty computation [13] offer partial solutions
but lack scalability. Recent studies in federated PM [14,15] highlight its poten-
tial but assume uniform logs and overlook preprocessing challenges. Our work
advances this line by combining ProM-based preprocessing with GRU sequence
modeling in a cross-silo FL framework. This ensures semantic alignment, pri-
vacy, and scalability, achieving predictive accuracy close to centralized baselines
while addressing communication—performance trade-offs.

3 Methodology

This study proposes a cross-silo FL framework for predictive process monitoring,
where organizations collaboratively train a shared deep learning model without
exchanging raw event logs. Each silo uses ProM for local preprocessing, convert-
ing raw logs into structured, abstracted traces suitable for deep learning. A cen-
tral server then aggregates locally trained models via FedAvg while ensuring data
privacy.

As shown in Figure 1, ProM ex-
tracts case IDs, timestamps, and ac-
tivities, applies noise filtering, and
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an event log Ly {a( )} where each trace o, = (e1,e2,...,e,) con-
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Fig. 1: Modular Pipeline with ProM-
based Local Preprocessing
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forming raw logs into sequence representations, and Encoding: Mapping events
into feature vectors via one-hot encoding, positional embedding, or temporal
features. Let xgk) denote the encoded input of trace afk), and yl(k) the label
(e.g., next activity or timestamp). Each silo implements a lightweight neural
network model, specifically an RNN-based Event Predictor, to learn next-event
prediction from its local sequences. The model architecture includes an em-
bedding layer to represent activities in a dense vector space, a GRU (Gated
Recurrent Unit) layer for capturing sequential patterns and a fully connected
layer with a softmax output over the activity vocabulary. Each client trains
its model using cross-entropy loss and Adam optimizer, without sharing raw
data. After local training, each client sends the model’s parameter weights to
the central server. Each silo trains a local model f(-;w) using local data. The
global federated learning objective is miny, F(w) := Zszl N Fy,(w), where
Ny, is the number of samples at silo k, N = 25:1 Ny, is the total number of
samples, Fy(w) = Nik Zf\;kl K(f(mz(-k);w),ygk)) is the local empirical loss, and
£(-,+) is a supervised loss function (e.g., cross-entropy). Each global training
round ¢ includes the steps: (1) The server sends the current model w® to a
subset of clients S;. (2) Each client & € S; updates the model locally using
w,(:H) =w® — 5. VE,(w®) and finally (3) the server aggregates the updated

Ne . g (t+)

weights using w(tt1) = > kes, Soes Ny

. The communication cost per

round is CV) = > kes, (size(AW,(f)) + size(w(t))). Assuming the model has d
parameters stored as 32-bit floats, each client exchanges C, = 2d x 4 bytes.
Quantization or sparsification strategies can reduce Cy.

The proposed framework supports various predictive process mining tasks
such as Next Activity Prediction: ygk) = a;41 given partial trace prefix,
Timestamp Estimation: Predicting inter-arrival or completion times and Re-
maining Time Prediction: Estimating time-to-completion of a running case.
The model f(-;w) can be instantiated as a GRU-based architecture, an RNN
designed to capture temporal dependencies in sequential data. The GRU archi-
tecture efficiently manages memory and gating using the reset and update gates.
Unlike LSTMs, GRUs do not require a separate memory cell, making them com-
putationally simpler while still capable of modeling long-term dependencies in
sequential data.

3.1 Convergence Behavior

We analyze the convergence behavior of our proposed FL framework under
standard assumptions commonly adopted in distributed optimization litera-
ture. Let the global objective be defined as F(w) = %25:1 Fy(w), where
F;, denotes the local objective at silo k, and w is the shared model pa-
rameter. Assumptions: (A1) L-Smoothness: Each Fj is L-smooth; i.e.,
|\VE,(w1)—VE,(ws)|| < L||wi —ws]| for all w1, ws. (A2) Unbiased Stochas-
tic Gradients: E[V fi(w)] = VFj(w). (A3) Bounded Variance: E||V f(w)—
VFi(w)||? < 02, Under the above assumptions, and using a constant learning
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rate n = O(1/V/T), our method ensures that after T communication rounds
across K silos, the expected gradient norm of the global loss function satisfies

min;—;_rE|VE(w®)|? < O (\/%) This bound implies sublinear conver-

gence, where both increased communication rounds 7" and larger silo participa-
tion K enhance learning stability. Notably, this is achieved without requiring
centralized access to sensitive event logs, preserving data sovereignty while en-
suring robust global model convergence.

Proof We follow a standard stochastic federated optimization argument, sim-
ilar to the analysis in [10,16]. Let w® be the global model at round ¢, up-
dated via Federated Averaging as w(t+1) = w(t) —p, > kes, ﬁVFk(w(t)), where
Sy C{1,..., K} is the subset of selected silos at round ¢, and 7, is the learning
rate. Under the assumption that each F} is L-smooth and the gradient noise is
bounded, we can use the standard descent lemma to bound the expected decrease
in global loss between rounds, E[F(w(*+D)] < E[F(w®)] — ZE||VE(w®)[? +

2 _2
L;’}g , where 02 denotes the bounded variance of the stochastic gradients. Sum-

ming the inequality over ¢ = 1 to T and choosing a constant learning rate
m =1 = O(1/VT), we obtain > E|VF(w®)|? <O ( L ) This result

VKT
implies that the expected gradient norm decreases over time, and the conver-

gence improves with the number of participating silos K and communication
rounds 7. Importantly, this convergence is achieved without sharing raw event
logs, thus preserving cross-silo data privacy.

4 Performance Evaluation

We evaluate our cross-silo FL framework using three silos: one with the BPI
Challenge 2019 dataset [17] and two with synthetic variants. Each silo trains
a GRU-based RNN (embedding size 128, two GRU layers with 128 units and
dropout 0.3) optimized with Adam and cross-entropy loss. Local models run for
5 epochs, and FedAvg aggregates updates over 5 rounds.

Table 1: Performance Comparison of Federated and Baseline Models

Model Accuracy (%)|Cross-Entropy Loss| Data Shared
Local (Silo 1) 72.4 1.15 No

Local (Silo 2) 74.1 1.08 No

Local (Silo 3) 70.9 1.22 No
Centralized (Upper Bound) 80.3 0.88 Full Logs
Federated (Ours) 78.1 0.93 Model Weights Only

Our federated model achieves 78.1% accuracy, closely approaching the cen-
tralized baseline (80.%) while preserving privacy. Figures 2a and 2b show accu-
racy and loss convergence across rounds. Client variance (Figure 3a) narrows over
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Fig. 2: Accuracy and Loss
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Fig. 3: Accuracy vs. Communication rounds and cost

time, indicating fairer performance across silos. Finally, Figure 3b highlights the
communication—accuracy trade-off, with diminishing returns beyond 15-20 MB
per client, confirming the practicality of our framework in resource-constrained,
privacy-sensitive settings.

5 Conclusion

We propose a cross-silo federated learning framework for predictive process mon-
itoring that preserves privacy while enabling collaborative model training. Local
preprocessing with trace abstraction ensures data remain within organizations,
while deep encoders capture temporal and contextual dependencies. Our ap-
proach achieves accuracy close to centralized baselines and highlights communi-
cation—performance trade-offs, enabling privacy-preserving process intelligence
in domains such as healthcare, finance, and supply chains. Future work will
explore asynchronous FL, personalization, and differential privacy to enhance
robustness and compliance.
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