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Abstract. Predictive Process Monitoring (PPM) in Process Mining (PM) focuses on forecasting
future aspects of ongoing business processes. Recently, Deep Learning (DL) models have emerged as
top performers across various prediction tasks. However, prevalent practices in instance creation lead
to case-length distortion, a problem where longer cases are overrepresented, biasing the training process
towards these longer cases and distorting evaluation by skewing performance metrics, potentially
leading to misleading assessments. To address this challenge, we introduce the CaLenDiR (Case Length
Distribution-Reflective) framework for DL-based PPM, which aligns training and evaluation with the
true case length distributions. CaLenDiR training includes Uniform Case-Based Sampling (UCBS)
to ensure balanced case contributions and, for suffix prediction, employs suffix-length-normalized loss
functions to prevent further exacerbation of training distortion. For evaluation, the framework proposes
case-based metrics as an alternative to traditional, distorted instance-based metrics. Our extensive
experiments demonstrate CaLenDiR’s effectiveness in improving model robustness and generalization,
offering new insights into the interaction between log characteristics and model behavior.

Keywords: Process Mining · Predictive Process Monitoring · Deep Learning · Case-Length Distortion.

1 Introduction

Predictive Process Monitoring (PPM) focuses on developing techniques for the prediction of remaining runtime
(e.g. [1,3,9,13]), outcome (e.g. [4,6,12,14]), next event (e.g. [1,2,9]), or even the entire suffix (e.g. [1,3,5,9,11,15]).

Despite the success of these DL-based techniques [3, 6, 9, 13], an issue we term case-length distortion
arises from the prevalent approach to instance creation, where the overrepresentation of longer cases (1)
during training reduces the models’ generalization ability over the true underlying distribution of cases and
their lengths, while (2) skewing the performance metrics during evaluation, in turn leading to a potentially
misleading assessment of model performance. In the specific task of suffix prediction, this distortion is further
amplified by non-normalized loss functions, which also overemphasize longer cases. To eliminate case-length
distortion, we introduce the CaLenDiR (Case Length Distribution-Reflective) PPM framework, specifically
designed for DL techniques and comprised of two primary components. First, CaLenDiR training, which
employs Uniform Case-Based Sampling (UCBS)—applicable across all PPM prediction tasks—to ensure a
balanced contribution of training instances from each case. For suffix prediction, CaLenDiR training further
incorporates Suffix-Length-Normalized Loss Functions to mitigate the overemphasis on longer cases. This
training approach aims to enhance the generalization ability and robustness of DL-based models. Second,
beyond training, CaLenDiR introduces Case-Based (CB) metrics as an alternative to traditional, skewed
Instance-Based (IB) metrics, ensuring that performance metrics accurately reflect the models’ ability to
generalize across the actual distribution of cases.

Extensive experiments applied to suffix prediction not only highlight the effectiveness of our framework
in improving the generalization capabilities and robustness of DL-based techniques across various prediction



2 B. Wuyts et al.

tasks, but also delve deeply into the interplay between log characteristics, model properties, and prediction
performance. By analyzing results against varying log peculiarities and model features, we uncover further
insights and raise critical questions about the components essential for effective suffix prediction. This
thorough analysis also explores the impact of these factors on evaluation setups, providing a nuanced
understanding of how event log characteristics and model design influence overall performance.

2 Background & Related Work

2.1 DL-based PPM & Event Log Data

DL-based PPM Most DL-based PPM techniques rely on Long Short-Term Memory (LSTM) network.
In outcome prediction, Hinkka et al. [4] were among the first to explore Recurrent Neural Networks (RNN),
including LSTM variants. Weytjens et al. [14] demonstrated that Convolutional Neural Networks (CNNs) are
a fast, competitive outcome prediction alternative to LSTMs. For runtime prediction, Navarin et al. [7] intro-
duced an LSTM model for direct remaining time estimation. Tax et al. [9], and Camargo et al. [1] used LSTM
networks for multi-task next-event prediction, targeting both activity labels and timestamps, with [1] also pre-
dicting roles. These trained models were further applied to suffix and remaining time predictions via external
feedback loops. More recently, Philipp et al. [8] pioneered the use of Transformer components for next-event
prediction, signaling a shift to more advanced architectures. More recently, a number of DL-based techniques
for the particularly challenging task of suffix prediction have been proposed. Since our CaLenDiR framework is
evaluated within this context, further details on DL-based suffix prediction techniques are provided in Sect. 2.2.

PPM neural networks, though varied in architecture, share a common training method. Data is processed
in small subsets known as batches, with the model’s predictions compared to actual targets using a loss
function. The model’s parameters are adjusted to minimize this error, and this process repeats across all
batches in an epoch. Multiple epochs allow the model to refine its predictions and improve accuracy by
repeatedly processing the dataset.

Event Log Data An event log L = {σi|1≤ i≤ |L|} records cases σi that represent a sequence of
chronologically ordered events ⟨ei,1,...,ei,ni

⟩, with ni being the number of events executed for that particular
case. For notational simplicity, unless explicitly needed, the subscript i referring to the case is omitted. An
event is a tuple e=(a,c,t,f1,...,fm) with a the activity label, c the case ID, t the timestamp, and f1,...,fm
(with m≥0) the potential case and event features. All elements comprising the event tuple e can be accessed
individually, and are denoted by means of the subscript of the event. E.g., the activity label of the j-th
event ej (j∈{1,...,n}) is denoted by aj, while the timestamp of that same event is denoted by tj.

Moreover, to enable algorithms to interpret (and predict) timestamps, it is necessary to convert them into
a numerical proxy. As such, they are converted into the numerical feature time elapsed since the previous
event tpj =tj−tj−1 (∀j=2,...,n), capturing the absolute amount of time elapsed since the previous event.
For the first event e1, t

p
1=0.

PPM techniques are trained and evaluated on historical data. To do so, event log L is subdivided into
a training log Ltrain (⊂L) and test log Ltest (⊂L). Afterwards, for both Ltrain and Ltest , each case σi

is parsed into ni prefix-target pairs or instances
{
(σp

i,k,yi,k)|1≤k≤ni

}
(e.g. [1,3,7,12–15])3 ultimately

resulting in the training and test set of instances, Ntrain & Ntest . The prefix σp
i,k=⟨ei,1,...,ei,k⟩ contains the

first k events, mimicking a real-life unfinished case, serving as the input, while the target yi,k encapsulates
the ground-truth prediction target(s), the form of which depends on the specific prediction task at hand.

For instance, in remaining time prediction, the target yk=rk represents the total remaining runtime from
the last observed prefix event ek until the case completion en, calculated as rk=tn−tk. For next event
3 Other approaches (e.g. [5,9,11]) slightly deviate, and construct ni−1 instances, with 2≤k≤ni
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prediction, the target yk=ak+1 is the activity label of the event that directly follows the last observed prefix
event ek (e.g. [2]). Alternatively, other next event prediction approaches (e.g., [1,9,10]) opt for the multi-task
target yk=(ak+1,t

p
k+1), simultaneously predicting the next event’s activity label and its timestamp (proxy).

In (binary) outcome prediction, the target yk = o with o∈{0,1} represents a binary label indicating a
particular outcome of the process. Note that the subscript k is omitted since true label o does not depend
on event index k. Lastly, in suffix prediction, a commonly used (multi-task) target yk is the sequence
⟨(ak+1,t

p
k+1),...,(an,t

p
n),(EOS)⟩, which includes the remaining activity labels and their corresponding

timestamps, i.e. the activity and timestamp suffix, with an End Of Sequence (EOS) token added during
preprocessing to denote the end of a case. Additionally, many suffix prediction techniques produce an
additional scalar remaining runtime prediction r̂k, either directly (e.g. [3,15]), or indirectly (e.g. [1,5,9,11]).

2.2 Suffix Prediction

The majority of (DL-based) suffix prediction techniques are developed to jointly predict the activity suffix
⟨ak+1,...,an,EOS⟩, timestamp suffix ⟨tpk+1,...,t

p
n⟩ and remaining runtime rk, when being presented with

a prefix σp
k. As such, the multi-task target yk comprises two sequences and one scalar target.

All suffix prediction networks are trained using a multi-task loss function for joint optimization. Most
use an additive loss function, summing the individual loss functions for each target. Commonly used loss
functions for these targets include:
1. Activity Suffix Prediction - Categorical Cross Entropy: Let âj,t be the predicted probability

for the t-th activity label in the suffix of the j-th instance, and aj,t be the true activity label. The
cross-entropy loss for the activity suffix is given by:

Lactivity=− 1∑B
j=1Nj

B∑
j=1

Nj∑
t=1

C∑
c=1

aj,t,clog(âj,t,c) (1)

where B is the batch size, Nj is the number of events in the (ground-truth) suffix of the j-th instance,
and C is the number of possible activity labels.

2. Timestamp Suffix Prediction - Mean Absolute Error (MAE): Let t̂pj,t be the predicted timestamp
for the t-th event in the suffix of the j-th instance, and tpj,t be the true timestamp. The MAE loss for
the timestamp suffix is given by:

Ltimestamp=
1∑B

j=1Nj

B∑
j=1

Nj∑
t=1

|̂tpj,t−tpj,t| (2)

3. Remaining Runtime Prediction - Mean Absolute Error (MAE): Let r̂j be the predicted
remaining runtime for the j-th instance, and rj be the true remaining runtime. The MAE loss for the
remaining runtime is given by:

Lruntime=
1

B

B∑
j=1

|r̂j−rj| (3)

However, the way in which different techniques are trained to ultimately deliver these predictions, differs. Most
recently, Wuyts et al. [15] proposed a Data-Aware (DA) encoder-decoder Transformer-based network, the only
technique explicitly trained for jointly predicting all three targets, using the following composite loss function
Lbatch=Lactivity+Ltimestamp+Lruntime. Taymouri et al. [11] introduced a Non-Data-Aware (NDA) encoder-
decoder LSTM network trained to generate activity and timestamp suffixes, with the remaining runtime implic-
itly derived by computing the sum over the predicted timestamp (proxy) suffix, i.e., r̂k=

∑
t̂pk+i. They further-

more complement supervised training with adversarial learning, resulting in performance gains for the largest
beam widths. They used the following supervised loss function: Lbatch=L′

activity+L′
timestamp, with L′

activity=
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i=1

∑Ni

t=1

∑C
c=1ai,t,clog(âi,t,c), which is highly similar to Eq. 1, except for the omission of averaging, and

with L′
timestamp =

∑B
i=1

(
(
∑

t̂pk+i)−
∑

tpk+i

)2. Ketykó et al. [5] compared various NDA suffix prediction
models, including encoder-decoder LSTM and Transformer architectures. These seq2seq models were trained
for activity and timestamp suffix prediction, with remaining runtime derived during inference (r̂k=

∑
t̂pk+i),

using a weighted sum of categorical cross-entropy and Mean Squared Error (MSE) losses. The MSE loss is akin
to the MAE loss (Eq. 2), but with (̂ti,t−ti,t)

2 replacing |̂ti,t−ti,t|. - The DA LSTM-based technique by Gun-
narsson et al. [3] is explicitly trained to predict the activity and remaining time suffix ⟨rk,...,rn−1⟩, deviating
from the common timestamp suffix approach. During inference, timestamp suffix predictions can be derived by
subtracting consecutive timestamp predictions (̂tpk+i= r̂k+i−1−r̂k+i), while only the first element of the pre-
dicted remaining time suffix (r̂k) is used for remaining time estimation. They used the following loss function:
Lbatch=Lactivity+L′

runtime. It should be noted that the latter component (L′
runtime) is the MAE as defined in

Eq. 2, except that it is computed over the predicted remaining time suffixes instead of the timestamp suffixes.
Moreover, earlier DL suffix prediction techniques, referred to as Single-Event Prediction (SEP) techniques,

are explicitly trained for next event (instead of suffix) prediction, i.e. the joint prediction of the next event’s
activity and timestamp proxy (ak+1,t

p
k+1). Only upon inference, they are leveraged for suffix generation

by means of an iterative feedback loop, updating event prefixes after every consecutive prediction, with
remaining time derived as in [5,11]. Examples are the techniques proposed by [1,9] (as discussed in Sect.
2.1), with [9] utilizing the unweighted sum of L1

activity and L1
timestamp, which are similar to their suffix

counterparts, Eq. 1 and 2 respectively, but with Nj=1, and [1] adding a third component to the loss: the
cross entropy loss L1

role for predicting the next ‘role’ as well.

2.3 Case-Length Distortion

Without further domain knowledge or specific attention to a specific set of cases, one would prefer PPM
techniques to generalize well over the underlying distribution of cases and their case lengths. However, the
common practice of instance creation (Sect. 2.1) and, in the case of suffix prediction, the prevalent use of
non-normalized loss functions in seq2seq DL architectures (Sect. 2.2, 4.1), introduces case-length distortions,
hindering this ideal generalization and skewing evaluation metrics.

Instance Creation Creating instances by parsing each original case σi into ni prefix-target pairs (Sect. 2.1)
leads to an overrepresentation of longer cases among the derived instances in both the training Ntrain and test
Ntest sets, compared to their original distribution of case lengths. This artificially induced bias towards longer
cases in Ntrain skews the models’ learning process and negatively influences the degree to which the models
generalize across the underlying case length distribution. Similarly, by default, evaluation metrics should mea-
sure models’ true performance across all test log cases σi∈Ltest , with each case weighted equally, regardless
of its length and resulting instances in Ntest . However, evaluation metrics are typically computed by averaging
over all instances in the test set Ntest , unintentionally amplifying the influence of longer cases (Sect. 3.3).

Figure 1 illustrates case-length distortion in the BPIC174 event log post-preprocessing. It compares the
original case length distribution (GTCLD) with that after instance parsing (IBCLD). Note that the IBCLD
represents the distribution of case lengths among the created instances, where each instance is labeled with
the length of the original case it was derived from. The comparison shows a clear shift towards longer cases
in the IBCLD, where they are overrepresented at the expense of cases pertaining to more representative
lengths, as also reflected in the means and medians.

Additionally, event logs’ case length distributions generally exhibit a pronounced right-skew, with outliers
often containing significantly more events than the median. Further investigation revealed these extended
cases to be frequently characterized by multiple repetitions of the same activity or group of activities,
4 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Fig. 1: Ground-Truth and Instance-Based Case Length Distributions for BPIC17 (post-preprocessing),
highlighting the overrepresentation of longer cases in the instance-based distribution.

often executed in quick succession, which raises important considerations regarding their representativeness
in modeling and whether models should be designed to accommodate or mitigate the influence of such
disproportionately represented cases.

Non-Normalized Loss Functions In suffix prediction, instances originating from longer cases inherently
possess longer ground-truth suffixes on average. Standard sequential loss functions, such as Lactivity (Eq.
1) and Ltimestamp (Eq. 2), average across all time steps within these suffixes for every instance in the batch,
resulting in a greater number of terms in the loss calculation for instances from longer cases, disproportionately
amplifying their influence on the overall loss. Consequently, these longer cases exert a stronger effect on
the gradient updates during training, further skewing the models’ learning process towards them.

3 Case Length Distribution-Reflective (CaLenDiR) PPM

In this section, we introduce the three core components of the CaLenDiR PPM framework designed to
address case-length distortion: Uniform Case-Based Sampling (UCBS) (Sect. 3.1), Suffix-Length-Normalized
Loss Functions for suffix prediction (Sect. 3.2), and Case-Based Evaluation Metrics (Sect. 3.3).

3.1 Uniform Case-Based Sampling (UCBS)

UCBS counteracts case-length distortion by equalizing the contribution of each case to the training set. At
the start of each epoch, it samples a uniform number of instances from each case σi in training log Ltrain ,
regardless of its original length. Let Nσi =

{
(σp

i,k,yi,k)|1≤k≤ni

}
be the set of instances (i.e., prefix-target

pairs) derived from case σi. The training set Ntrain =
⋃

σi∈Ltrain
Nσi

encompasses all instances derived
from all cases σi∈Ltrain , with ñtrain=median({ni |σi∈Ltrain}) as the median case length. The UCBS
procedure, detailed in Algorithm 1, begins by setting a random seed equal to the epoch number, ensuring
slightly different sampled sets N(e)

train each epoch e, which aids regularization and maintains reproducibility.
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The procedure iterates over each case in Ltrain , sampling ñtrain instances from Nσi. If the number of
instances for a case is less than ñtrain , sampling is done with replacement; otherwise, without replacement5.
This design balances uniform instance contribution with diversity, reducing the risk of overfitting and improving
training stability. The sampled instances are then aggregated to form the training set for epoch e: N(e)

train .

Algorithm 1 Uniform Case-Based Sampling (UCBS) Procedure
1: Input: Training log Ltrain , training set Ntrain , median case length ñtrain , epoch number e

2: Output: Sampled training set N(e)
train

3: Set random seed s=e
4: N

(e)
train←∅

5: for all σi∈Ltrain do
6: Nσi←{(σ

p
i,k,yi,k)∈Ntrain |1≤k≤ni}

7: if |Nσi |<ñtrain then
8: N

(e)
σi ← sample ñtrain instances from Nσi with replacement

9: else
10: N

(e)
σi ← sample ñtrain instances from Nσi without replacement

11: end if
12: N

(e)
train←N

(e)
train∪N

(e)
σi

13: end for
14: return N

(e)
train

3.2 Suffix-Length-Normalized Loss Functions

CaLenDiR’s Suffix-Length-Normalized Loss Functions provide an alternative to the standard loss functions
commonly used in seq2seq neural networks (e.g., [3,5,11,15]), which exacerbate case-length distortion. These
functions normalize each instance’s contribution by its suffix length Nj, rather than summing over all suffix
elements in a batch, ensuring equal weighting of all instances and preventing overemphasis on longer cases.
The normalized versions of Eq. 1 and 2 are provided in Eq. 4 and 5, respectively. This normalization can
also be applied to other timestamp loss functions, such as Mean Squared Error (MSE) used in, e.g., [5].
For SEP techniques (e.g., [1,2,9]), suffix-length normalization is unnecessary, as they predict only the next
event, with a single error per instance contributing to the loss.

L̃activity=− 1

B

B∑
j=1

 1

Nj

Nj∑
t=1

C∑
c=1

aj,t,clog(âj,t,c)

 (4)

L̃timestamp=
1

B

B∑
j=1

 1

Nj

Nj∑
t=1

|̂tpj,t−tpj,t|

 (5)

5 In the commonly applied instance creation approach, as described in Sect. 2.1, |Nσi |=ni. We use the generic
|Nσi | to ensure UCBS is applicable to methods where this may not hold, such as those creating only ni−1
instances (i.e., Nσi =

{
(σp

i,k,yi,k) |2≤k≤ni

}
).
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3.3 Case-Based Evaluation Metrics

The test log Ltest is transformed into a test set Ntest =
⋃

σi∈Ltest
Nσi (Sect. 2.1, 3.1). In multi-task

settings, the target yi,k comprises multiple prediction tasks. Let yx
i,k∈yi,k denote the ground truth for

prediction task x and prefix σp
i,k, and let ŷx

i,k be the corresponding model prediction. The evaluation
function mx :(y

x
i,k,ŷ

x
i,k) 7→R rates the prediction ŷx

i,k against the ground truth yx
i,k. Finally, let αi,k denote

the pair (σp
i,k,yi,k).The standard instance-based (IB) evaluation metric for prediction task x, averaging

over all instances αi,k∈Ntest , is then defined as:

MIB=
1

|Ntest |

|Ltest |∑
i=1

∑
αi,k∈Nσi

mx(y
x
i,k,ŷ

x
i,k) (6)

In this approach, longer cases disproportionately influence the results due to their higher instance count.
To mitigate this, we propose case-based (CB) evaluation metrics, where each test case σi is weighted equally,
regardless of length. This is done by first averaging the score per case and then averaging across all cases
in the test set, as shown in Eq. 7. This method provides a more balanced evaluation, accurately reflecting
the model’s performance across all cases in the test log Ltest .

MCB=
1

|Ltest |

|Ltest |∑
i=1

1

|Nσi|

 ∑
αi,k∈Nσi

mx(y
x
i,k,ŷ

x
i,k)

 (7)

4 Experimental Setup

In our previous work [15], we introduced a Transformer-based seq2seq architecture for suffix prediction
and re-implemented five existing architectures, applying consistent data preprocessing and scaling. All
models were trained and evaluated on four real-life event logs using the standard approach. In this study,
we replicate the experimental setup from [15] to evaluate CaLenDiR training for suffix prediction. The
same models are retrained on the same event logs with identical hyperparameters, except for (1) the use
of UCBS instead of processing the entire training set Ntrain each epoch (Sect. 3.1), and (2) suffix-length
normalization of the loss functions (Sect. 3.2).

While [15] primarily reported conventional Instance-Based (IB) metrics, this paper expands the analysis
by including Case-Based (CB) metrics (Sect. 3.3, 4.2) for both CaLenDiR-trained models and those trained
using the standard approach in [15]. To provide a comprehensive perspective, we also report IB metrics for
both training approaches. This dual reporting offers a more nuanced understanding of case-length distortion
and the impact of CaLenDiR training on model performance and generalization. By directly comparing the
evaluation metrics of CaLenDiR-trained models with those trained using the standard approach, we isolate
the impact of the training methodology, clearly measuring the improvements facilitated by CaLenDiR.

4.1 Data & Models

The four real-life event logs are: BPIC176, BPIC17-DR, BPIC197, and BAC. Table 1 summarizes their main
properties, including the average and standard deviation of the case length (event count) and case duration.
BPIC17-DR is a variant of BPIC17 with subsequent repetitions of the same activity removed to enhance
6 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
7 https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
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Table 1: Overview of the models (left) and event logs (right) included in the experimental comparison [15].
Benchmark seq2eq DA

Explicit
RT

prediction

Explicit
timestamp
prediction

Default loss CaLenDiR loss

SEP-LSTM × × × ✓ L1
activity+L1

timestamp L1
activity+L1

timestamp

CRTP-LSTM (NDA) ✓ × ✓ × Lactivity+L′
runtime L̃activity+L̃′

runtime

CRTP-LSTM ✓ ✓ ✓ × Lactivity+L′
runtime L̃activity+L̃′

runtime

ED-LSTM ✓ × × ✓ Lactivity+Ltimestamp L̃activity+L̃timestamp

SuTraN (NDA) ✓ × ✓ ✓ Lactivity+Ltimestamp+Lruntime L̃activity+L̃timestamp+Lruntime

SuTraN ✓ ✓ ✓ ✓ Lactivity+Ltimestamp+Lruntime L̃activity+L̃timestamp+Lruntime

Log Cases - Events Variants avg. - SD Length avg. - SD Duration
BPIC17 30,078 − 1,109,665 14,745 36.90 − 14.55 20.52 − 10.81 (days)

BPIC17-DR 30,078 − 704,202 3,592 23.42 − 6.85 20.52 − 10.81 (days)
BPIC19 181,395 − 986,077 5,767 5.44 − 1.78 71.76 − 36.78 (days)
BAC 362,563 − 1,767,186 13,496 4.87 − 2.49 732 − 912.24 (sec.)

data quality. The BAC log, sourced from a major European airport’s luggage handling system, is not publicly
available. Adopting a chronological 75-25 % out-of-time train-test split, each event log L is subdivided into a
training and test log (Ltrain & Ltest). The former was further divided into final training and validation logs
(Ltrain & Lval) by assigning the last 20 % of cases to Lval . The final train, validation and test sets (Ntrain ,
Nval & Ntest) are derived from Ltrain , Lval and Ltest as discussed in Sect. 2.1. Please refer to [15] for
further details regarding the preprocessing pipeline. Table 1 summarizes the six implementations, re-trained
using the CaLenDiR framework. The ‘DA’ column indicates whether the architecture is Data-Aware,
leveraging (all) available payload data beyond just the timestamp and activity information of the prefix
events. SEP-LSTM is a re-implementation of [9], trained solely for next event prediction, only generating
suffixes during inference using an external feedback loop (Sect. 2). CRTP-LSTM re-implements the DA
architecture from [3], while ED-LSTM, an encoder-decoder LSTM, is based on NDA techniques from [5,11].
SuTraN is the encoder-decoder Transformer network from [15]. SuTraN and CRTP-LSTM are the only
DA models, with NDA versions (SuTraN (NDA) and CRTP-LSTM (NDA)) also implemented.

During inference, all implementations generate an activity suffix, timestamp suffix, and remaining runtime
prediction, though the specific targets trained for, differ (Sect. 2.2). Each implementation uses a simple additive
loss function, summing the losses for its explicit prediction targets. The individual loss components (Table 1)
are standardized across implementations to ensure a level playing field. For CaLenDiR training, seq2seq models
use Suffix-Length-Normalized Cross Entropy (Eq. 4) for activity suffix prediction and Normalized MAE (Eq.
5) for timestamp suffix prediction. In CRTP-LSTM, the MAE is applied to remaining time suffixes instead of
timestamp suffixes. SuTraN, which predicts all three targets, adds a third loss function (Eq. 3) for remaining
time prediction, but no normalization is needed since it outputs a scalar instead of a sequence. SEP-LSTM,
trained only for next event prediction, uses non-sequential cross-entropy L1

activity and MAE L1
timestamp for next

activity and timestamp prediction (Sect. 2.2), respectively, which do not require normalization. Aside from
these training specifics, all other hyperparameters and inference settings, were kept consistent with those in [15].

4.2 Evaluation - Uniform Case-Based vs. Instance-Based

We evaluate the three prediction tasks using (normalized) Damerau-Levenshtein Similarity (DLS) for activity
suffix prediction and mean absolute error (MAE) for both timestamp suffix and remaining time prediction.
DLS measures sequence similarity on a scale from 0 (completely different) to 1 (identical) and is calculated
as DLS(X,Y )=1− DL(X,Y )

max(|X|,|Y |) , where DL(X,Y ) is the Damerau-Levenshtein distance between sequences X
and Y , and max(|X|,|Y |) the length of the longer sequence. For activity suffix prediction, DLS is computed
for each instance αi,k=(σp

i,k,yi,k) in Ntest as DLS(yactivity
i,k ,ŷactivity

i,k ), where yactivity
i,k is the ground-truth

activity suffix and ŷactivity
i,k the predicted suffix. The IB and CB metrics (DLSIB & DLSCB) are derived by

setting mx(y
x
i,k,ŷ

x
i,k) to DLS(yactivity

i,k ,ŷactivity
i,k ) in Equations 6 and 7 respectively. The IB and CB metrics

for remaining time (MAE
runtime

IB & MAE
runtime

CB ) are calculated by setting mx(y
x
i,k,ŷ

x
i,k) to |̂ri,k−ri,k|. In

contrast, the MAE for timestamp suffix prediction is computed across the Ni,k predicted timestamps in the
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suffix. Let t̂pi,k;t and tpi,k;t represent the predicted and true timestamps, respectively. The IB MAE is given by:

MAE
timestamp

IB =
1

|Ntest |

|Ltest |∑
i=1

∑
αi,k∈Nσi

Ni,k∑
t=1

|̂tpi,k;t−tpi,k;t|

To counter the resulting additional distortions (cf. Sect. 2.3 and 3.2), the CB MAE includes both case-based
weighting and suffix-length normalization:

MAE
timestamp

CB =
1

|Ltest |

|Ltest |∑
i=1

1

|Nσi
|

 ∑
αi,k∈Nσi

1

Ni,k

Ni,k∑
t=1

|̂tpi,k;t−tpi,k;t|


5 Results

Tables 2a and 2b present the IB and CB performance metrics for models trained using the standard
approach [15] and the CaLenDiR approach. The best results are in bold and underlined, while the second-best
are only in bold. Table 2c shows the percentage changes in these metrics for CaLenDiR training compared
to standard training, calculated as xcalendir−xstandard

xstandard
. Our analysis mainly focuses on the undistorted CB

metrics unless otherwise noted.

Table 2: Performance comparison across different techniques and datasets
(a) Standard Training

Model Damerau-Levenshtein Similarity (DLS) MAE Timestamp Suffix (MAEsuffix) MAE Remaining Runtime (MAEruntime)
BPIC17-DR BPIC17 BPIC19 BAC BPIC17-DR BPIC17 BPIC19 BAC (sec.) BPIC17-DR BPIC17 BPIC19 BAC (sec.)
IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB

SEP-LSTM 0.6733 0.6902 0.2160 0.2823 0.8425 0.8183 0.7206 0.7488 1178 1219 762 1048 16604 13930 113 64 10139 9699 11823 11683 30572 33645 420 262
CRTP-LSTM (NDA) 0.6525 0.6734 0.3357 0.3692 0.8435 0.8188 0.7320 0.7640 1391 1313 1009 1248 17182 14511 113 66 8931 8520 8906 8788 29323 33400 318 204

CRTP-LSTM 0.6741 0.7149 0.4095 0.4660 0.8522 0.8427 0.8374 0.8647 1556 1414 996 1184 15708 13572 112 61 8000 7287 8685 8059 21345 24360 301 191
ED-LSTM 0.6737 0.6902 0.3239 0.3623 0.8477 0.8201 0.7424 0.7663 1200 1224 739 993 16485 13810 108 61 9705 9298 12160 11889 31000 33914 338 217

SuTraN (NDA) 0.6723 0.6895 0.2669 0.3161 0.8435 0.8193 0.7355 0.7645 1201 1224 745 1008 16621 13897 109 61 8896 8452 8860 8754 29209 33387 308 200
SuTraN 0.7274 0.7621 0.3843 0.4621 0.8699 0.8601 0.8461 0.8698 1157 977 749 882 14542 12446 106 58 7727 6945 7913 7260 20182 23462 290 183

(b) CaLenDiR Training
Model Damerau-Levenshtein Similarity (DLS) MAE Timestamp Suffix (MAEsuffix) MAE Remaining Runtime (MAEruntime)

BPIC17-DR BPIC17 BPIC19 BAC BPIC17-DR BPIC17 BPIC19 BAC (sec.) BPIC17-DR BPIC17 BPIC19 BAC (sec.)
IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB

SEP-LSTM 0.6738 0.6931 0.2132 0.2818 0.8425 0.8217 0.7421 0.7764 1190 1218 759 1001 16909 14139 112 60 9821 9405 11940 11590 30134 33324 382 234
CRTP-LSTM (NDA) 0.6268 0.7014 0.4285 0.5207 0.7851 0.7784 0.7077 0.7527 1655 1298 1160 1136 18005 15046 122 72 9878 8775 10252 9157 33173 33730 331 201

CRTP-LSTM 0.6868 0.7551 0.4700 0.5523 0.8498 0.8451 0.8338 0.8665 1525 1318 1088 1209 16207 14105 109 54 8035 7072 8503 7513 22509 24938 301 177
ED-LSTM 0.6485 0.7141 0.3862 0.4809 0.7931 0.7883 0.7127 0.7564 1265 1181 894 948 16748 14061 115 62 9231 8795 10817 10078 36490 36624 385 252

SuTraN (NDA) 0.6521 0.7137 0.3704 0.4669 0.7907 0.7870 0.7097 0.7535 1288 1153 909 930 17260 14455 115 62 8943 8422 9015 8657 29716 32734 313 195
SuTraN 0.7278 0.7848 0.3795 0.4780 0.8656 0.8612 0.8386 0.8708 1187 943 765 833 14620 12341 107 52 7770 6939 7859 7092 20076 23146 285 169

(c) Percentage Change Comparison
Model Damerau-Levenshtein Similarity (DLS) MAE Timestamp Suffix (MAEsuffix) MAE Remaining Runtime (MAEruntime)

BPIC17-DR BPIC17 BPIC19 BAC BPIC17-DR BPIC17 BPIC19 BAC (sec.) BPIC17-DR BPIC17 BPIC19 BAC (sec.)
IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB IB CB

SEP-LSTM +0.07 +0.42 -1.30 -0.18 +0.00 +0.42 +2.98 +3.69 +1.02 -0.08 -0.39 -4.48 +1.84 +1.50 -0.88 -6.25 -3.14 -3.03 +0.99 -0.80 -1.43 -0.95 -9.05 -10.69
CRTP-LSTM (NDA) -3.94 +4.16 +27.64 +41.03 -6.92 -4.93 -3.32 -1.48 +18.98 -1.14 +14.97 -8.97 +4.79 +3.69 +7.96 +9.09 +10.60 +2.99 +15.11 +4.20 +13.13 +0.99 +4.09 -1.47

CRTP-LSTM +1.88 +5.62 +14.77 +18.52 -0.28 +0.28 -0.43 +0.21 -1.99 -6.79 +9.24 +2.11 +3.18 +3.93 -2.68 -11.48 +0.44 -2.95 -2.10 -6.78 +5.45 +2.37 +0.00 -7.3
ED-LSTM -3.74 +3.46 +19.23 +32.74 -6.44 -3.88 -4.00 -1.29 +5.42 -3.51 +20.97 -4.53 +1.60 +1.82 +6.48 +1.64 -4.88 -5.41 -11.04 -15.23 +17.71 +7.99 +13.91 +16.13

SuTraN (NDA) -3.00 +3.51 +38.78 +47.71 -6.26 -3.94 -3.51 -1.44 +7.24 -5.80 +22.01 -7.74 +3.84 +4.02 +5.50 +1.64 +0.53 -0.35 +1.75 -1.11 +1.74 -1.96 +1.62 -2.50
SuTraN +0.05 +2.98 -1.25 +3.44 -0.49 +0.13 -0.89 +0.11 +2.59 -3.48 +2.14 -5.56 +0.54 -0.84 +0.94 -10.34 +0.56 -0.09 -0.68 -2.31 -0.53 -1.35 -1.72 -7.65

Average Change -1.45 +3.36 +16.31 +23.88 -3.49 -1.99 -1.53 -0.03 +5.54 -3.47 +11.49 -4.86 +2.63 +2.35 +2.89 -2.62 +0.68 -1.47 +0.67 -3.67 +6.01 +1.18 +1.47 -2.25

As expected, CaLenDiR-training generally improves CB metrics across all three prediction tasks (see
Average Change row in Table 2c. However, exceptions include BPIC19, where CB DLS, MAEsuffix, and
MAEruntimeslightly decline by approximately 1.99%, 2.35%, and 1.18%, respectively, and a negligible decrease
of 0.03% in CB DLS on the BAC log. Overall, these results indicate that CaLenDiR training enhances



10 B. Wuyts et al.

the generalization and robustness of suffix prediction models. Conversely, CaLenDiR training is anticipated
to reduce IB performance, which is supported by the average IB percentage changes. A notable exception
is the IB DLS on BPIC17, where CaLenDiR training leads to a significant 16.31% improvement (see infra).

Eliminating case-length distortion also has important implications for the insights derived from evaluation
and benchmarking setups. This is evident in the shifts in CB rankings among CaLenDiR-trained models
(Table 2b) versus the standard approach (Table 2a). Rankings shift across all logs for activity suffix (DLS)
and timestamp suffix prediction (MAEsuffix), and on three of four logs for remaining time prediction
(MAEruntime), except for BPIC17-DR, where models retain their “standard’ rankings. These shifts indicate
that susceptibility to case-length distortion is model-dependent. The changes in IB rankings for all logs
for DLS and MAEruntime, and for three of four logs for MAEsuffix, further support this hypothesis.

The more pronounced the right-skewness in a log’s case length distribution, the greater the improvements
from CaLenDiR training across all prediction tasks (Table 2c). This skewness is most pronounced in BPIC17
(Fig. 1, Table 1) and least in BPIC19 (Table 1).

In BPIC17, cases frequently include immediate repetitions of identical activities, a pattern that becomes
more prevalent with longer cases. This repetitiveness, previously examined in [15], likely introduces noise into
the data. The BPIC17 results support the hypothesis that lengthy, repetitive cases contribute more noise
than valuable information to the predictive models. CaLenDiR training leads to the largest improvements
across all event logs: DLS increases by 23.88%, MAEsuffixdecreases by 4.86%, and MAEruntimereduces by
3.67%. Notably, the IB DLS metric, still influenced by the overrepresentation of these lengthy cases, improves
significantly by 16.31%, contrary to trends in other logs. The expected performance drop on longer cases
did not materialize, suggesting that improvements on more moderate, representative cases far outweigh
any negative impact on IB DLS. This further supports the hypothesis that extended BPIC17 cases distort
predictive signals relevant to representative cases while lacking meaningful, learnable patterns themselves.
The repetitive events in lengthy BPIC17 cases are also primarily executed in quick succession, leading to
numerous near-zero values in their ground-truth timestamp suffixes, which disrupts the predictive signal.
CaLenDiR training, by reducing the overrepresentation of these cases, results in an 11.49% decrease in
IB MAEsuffixperformance but a 4.86% improvement in CB MAEsuffix, the largest changes across all logs.
This suggests that CaLenDiR-trained models are less prone to overfitting on low elapsed time predictions,
enhancing robustness and improving the overall predictive signal. As a result, these models better predict
timestamps for the more representative BPIC17 cases, reflected in the significant CB improvements and
deterioration of the IB metrics due to the continued bias from near-zero targets.

BPIC19 has the least right-skewed distribution of case lengths among all logs, suggesting a lower presence
of case-length distortion. Despite dedicated preprocessing efforts to address observed drift in BPIC19
(cf. [15,16]), minor distributional changes persist, such as an increase in the frequency of slightly longer
cases in the (out-of-time) test set. Additionally, BPIC19 uniquely contains a significant number of (training)
cases with only two events. CaLenDiR training in turn reduces the disproportionate impact of these slightly
longer cases while balancing the importance of these short outliers, likely explaining the generally divergent
BPIC19 results. This raises questions about whether these short outliers should be further addressed as well.

However, as with all logs, the impact of CaLenDiR training on BPIC19 remains both model- and
prediction task-dependent. Interestingly, data-aware (DA) models, i.e. CRTP-LSTM and SuTraN, are not
adversely affected and even - although negligible - show an increase in CB DLS performance. This might
suggest that the longer cases, more frequent in the test set, occupy a distinct region in the feature hyperspace,
making these DA models more resilient to activity suffix prediction under moderate drift conditions. For
timestamp suffix and runtime prediction however, only SuTraN remains resilient.

In addition to the DA models, SEP-LSTM, the only model trained for next-event rather than suffix
prediction, also shows mild DLS and MAEruntime improvements with CaLenDiR on BPIC19. This suggests
that CaLenDiR aids SEP-LSTM by minimizing case length distortion, allowing it to focus on the prevalent
short-case patterns typical of BPIC19. Similar trends are observed in BAC, where SEP-LSTM shows the
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largest improvements in DLS (+3.69%) and MAEruntime (−10.69%), moving from the worst to the third-best
performing model. These results underscore SEP-LSTM’s effectiveness in shorter logs, where simpler,
consistent patterns prevail. Conversely, SEP-LSTM struggles with longer sequences due to training-inference
discrepancies, as seen in BPIC17-DR, where it reports the mildest DLS and MAEsuffix improvements
(+0.42% and −0.08%), and in BPIC17, where it uniquely shows a slight DLS decrease (−0.18%), contrasting
with the major improvements reported for other models. This highlights SEP-LSTM’s sensitivity to case
length and its reliance on environments where the noise from atypical long cases is reduced.

Beyond SEP-LSTM, also both DA models consistently improved on the BAC log, unlike their non-
data-aware (NDA) counterparts, which saw slight decreases in DLS and MAEsuffixand smaller gains in
MAEruntime. This suggests that irregular longer cases and associated case-length distortion significantly
disrupt the predictive signal from additional payload data in this log.

6 Conclusion

This study introduced the CaLenDiR PPM framework, which addresses case-length distortion in DL-based
PPM techniques to improve model generalization, performance, and robustness. At the core of CaLenDiR
is the UCBS technique, eliminating distortion originating from the prevalent approach to instance creation
during training. For suffix prediction, CaLenDiR incorporates Suffix-Length-Normalized Loss Functions
to tackle additional distortions specific to the training of suffix prediction models. Furthermore, to prevent
these same sources of distortion from skewing evaluation, CaLenDiR includes generic Case-Based (CB)
metrics as the more representative alternative to the widely used Instance-Based (IB) metrics.

We evaluated the effectiveness of the CaLenDiR methodology through experiments focused on suffix
prediction. Using multiple real-life event logs and six different DL-based suffix prediction techniques, each
model was trained twice per log: once using prevalent training methods and once using CaLenDiR-training.
This approach allowed for a direct performance comparison, isolating the impact of CaLenDiR-training.
The results highlight the importance of addressing this distortion in PPM and demonstrate the effectiveness
of the proposed CaLenDiR framework in improving model performance and robustness. The changes in
model rankings across various metrics underscore significant implications for performance benchmarking,
revealing that susceptibility to case-length distortion is model-dependent and that addressing it alters
competitive standings. Our deeper analysis of log characteristics revealed that the more right-skewed the
case length distribution, the more pronounced the case-length distortion, and hence the greater the effect
of CaLenDiR. By investigating log peculiarities following distinctive results, we uncovered further insights
and raised important questions regarding the critical components required for effective suffix prediction,
and the intricate interplay between these components, event log characteristics and model performance.

Future work could explore the effectiveness of the CaLenDiR framework across different prediction tasks
beyond suffix prediction.

To promote transparency and collaboration within the research community, we have made the code
for this study and the implementation of all CaLenDiR components available to the public at https:
//github.com/BrechtWts/CaLenDiR-PPM. The repository includes detailed documentation and supple-
mentary materials to facilitate reproducibility, support the integration of the CaLenDiR framework into
other research projects, and contribute to the advancement of the PPM field.
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