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Abstract. Event logs capture the execution of processes, record activ-
ities and additional information. A trace represents a single instance
of a process and includes a sequence of activity records and case at-
tributes with additional information. Event logs may contain sensitive
personal information that could harm an individual’s privacy if it is pub-
lished without pre-processing. Differential privacy (DP) limits the disclo-
sure of new information about any individual when publishing an event
log beyond the publicly available background knowledge. Many privacy-
preserving approaches to event log publishing ensure DP. Traditional
methods focus on preserving the control flow but omit case attributes,
limiting comprehensive process analysis based on these attributes. This
work addresses this limitation by proposing a novel privacy-preserving
event log publishing framework. Our approach ensures privacy for the
control flow and case attributes, utilising synthetic tabular data gener-
ation approaches based on machine learning that guarantee DP. The
framework allows for the use of various tabular data generation ap-
proaches. Experimental results with real-world event data demonstrate
the framework’s feasibility and highlight the trade-off between data util-
ity and the guaranteed levels of privacy.

Keywords: Differential Privacy · Process Mining · Event Logs · Ma-
chine Learning.

1 Introduction

Modern information systems are designed to record the activities executed in
processes across different domains such as businesses or healthcare [1]. This
information is consolidated into event logs, which are collections of the executed
activities. Each activity is part of a sequence of activities that comprise a case
and additional attributes on the case level might be recorded.

Process mining aims to generate insights from event logs [1]. This could
include discovering a process’s control flow, optimising it, detecting deviations
from the expected behaviour, or predicting future activities. Combined with case
attributes more detailed analyses are possible, e.g. predictive monitoring of pro-
cesses [19] or identifying differing process behaviour for cohorts of patients [15].
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Event logs contain personal data about the individuals involved in the pro-
cess. Legislation enforces the protection of personal data, the General Data Pro-
tection Regulation (GDPR) in the European Union (Regulation 2016/679, European

Parliament) or the Privacy Act in Australia (Privacy act 1988, Commonwealth of Aus-

tralia). Personal data is considered sensitive and thus needs additional protection
when it reveals, for instance, health-related information, ethnic origin or polit-
ical opinions of individuals. Event logs contain possibly sensitive information
in the recorded activities or information included in the additionally collected
attributes. For a hospital process, this might be a patient’s treatment, the time
when the treatment is executed, or the patient’s treatment outcome. An adver-
sary might be able to link an individual to a case and re-identify the individual.
To protect the privacy of the individuals, it is necessary to apply transformations
to the data before publishing it [6,17].

After applying the transformations, the data should still be useful for subse-
quent analysis [12]. It has been shown that simple removal of names and unique
identifiers from the data might lead to re-identification [25]. Differential pri-
vacy (DP) provides mathematically proven privacy that limits the impact of any
single individual on a dataset [3]. Consequently, publishing a differentially pri-
vate dataset offers only negligible additional information to adversaries beyond
general background knowledge. Unlike group-based techniques where records
are generalised or suppressed to create groups of similar records [26], DP also
prevents predicate singling out attacks, to which group-based techniques are
vulnerable [2].

Most existing methods to guarantee DP for event logs focus on the con-
trol flow by omitting other information contained in the event log [8,9,17]. [10]
proposed a method to include contextual information, timestamps and case at-
tributes in the anonymised event log. However, this method assumes that the
case attributes are independent, which is unrealistic for most common event logs.
To the best of our knowledge, no other approaches support the privatisation of
an event log with case attributes while guaranteeing DP.

Methods to guarantee DP for purely tabular data have been the focus of
research [18,27,31]. These tabular data generation algorithms (TDG) reproduce
a dataset by estimating the underlying distribution of the data [31]. Since this



does not inherently ensure DP, noise is added to the estimation process to achieve
it. We argue that because of the similarities between tabular data and event log
data, applying those proven approaches to event log data is possible. However,
we argue that additional measures are required to ensure that the characteristics
of event logs are accounted for.

In this paper, we propose a framework to apply synthetic tabular data gen-
eration methods to event logs while guaranteeing DP for the generated event
log. Our contribution is twofold: (1) We propose a framework (DP-ELCA) to
anonymise event logs with case attributes while guaranteeing DP. (2) We discuss
the privacy implications when applying tabular data generation techniques to
event logs. (3) We benchmark our framework using different TDGs on multiple
real-life event logs and assess the similarity of the anonymised event log to the
original data.

The remainder of this paper is structured as follows. Section 2 introduces the
necessary background information. In Section 3 we present our approach. We
evaluate our approach in Section 4. In Section 5 we discuss related work and
conclude in Section 6.

2 Preliminaries

2.1 Event logs

An event log L is composed of traces, where each trace consists of a sequence of
activities. The traces represent the executions of cases in the process and next to
the sequence of activities each trace can have case attributes that provide addi-
tional information about the case. We consider only the control flow information
and the case attributes in this approach.

Definition 1 (Event log). An event log L with case attributes is defined as a
set of tuples, where each tuple consists of a trace and a set of case attributes:
L = {(σ1, ca1), (σ2, ca2), . . . , (σn, can)}. Each trace σ is a sequence of activities
σi = ⟨a1, a2, . . . , al⟩, where aj is the j-th activity in the trace and l its varying
length. The set of case attributes cai = {att1i , att2i , . . . , att

p
i }, where p is the

number of case attributes, provides additional information about the case.

2.2 Differential privacy

Differential privacy (DP) is a probabilistic privacy guarantee given on the output
of a data processing mechanism M given an input in form of a dataset X [3].
It states that anyone examining the output draws the same conclusions about
an individual’s private information regardless of whether that individual’s data
was part of the input to the mechanism or not. We apply the definition of DP
in [3] to event logs.

Definition 2 (ε, δ-DP for event logs). Let L1 and L2 be two event logs differ-
ing in at most one trace σ. Further, let ε > 0 and δ ∈ [0, 1] be privacy parameters.
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Then a randomised mechanism M provides (ε, δ)-DP if for all subsets S of the
output space of M,

Pr[M(L1) ∈ S]

Pr[M(L2) ∈ S]
≤ eε + δ (1)

where the probability Pr is taken over the randomness introduced by the mecha-
nism M.

Intuitively, ε represents the privacy loss incurred when including an individ-
ual’s data in the dataset. δ is the probability for a deviation from this guarantee.

Proven theorems give bounds for the privacy budget when applying multi-
ple differentially private mechanisms to the same dataset. The k-fold adaptive
composition theorem allows chained heterogeneous mechanisms to access the
outputs of the previous mechanisms:

Theorem 1 (k-fold adaptive composition [13]). Let M1,M2, . . . ,Mk be
(εi, δi)-differentially private mechanism for i ∈ [k], εi > 0, δi ∈ [0, 1] and δ̃ ∈
[0, 1]. Then the combined mechanism using k-fold adaptive composition of Mi

provides (ε̃δ̃, 1− (1− δ̃)
∏k

i=1(1− δi))-DP with ε̃δ̃ =

min

{ k∑
i=1

εi,

k∑
i=1

(eεi − 1)εi
eεi + 1

+
√

k∑
i=1

2ε2i log

(
e+

√∑k
i=1 ε

2
i

δ̃

)
,

k∑
i=1

(eεi − 1)εi
eεi + 1

+
√

k∑
i=1

2ε2i log

(
1

δ̃

)} (2)

2.3 TraVaS: Differentially private trace variant selection

TraVaS is a framework that allows for releasing the distribution of trace variants
based on a private partition selection algorithm with a privacy budget of (ε, δ).
It utilises a k-Truncated Symmetric Geometric Distribution (k-TSGD) to add
noise to the frequencies of the trace variants. Based on the privacy budget noise
values are drawn from the k-TSGD and added to each trace variant count. The
output then only contains trace variants where the perturbed count is above a
threshold that is calculated using the privacy budget. This ensures DP for the
resulting trace variant distribution [23].

2.4 Tabular data generation

Tabular data generation aims to generate synthetic data that closely resembles
the statistical properties of the original data [30]. It can be used to provide data
for analysis without revealing sensitive information about the individuals in the
dataset. While the original data is not disclosed, the synthetic data should keep
the statistical properties of the original data, such as the distribution of the data
points and the correlations between the columns.
Methods based on Graphical Models The methods based on graphical
models first measure the conditional distributions in the dataset [18,31]. Noise
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is introduced into the measurements to achieve DP, where the scale of the noise
is computed based on the provided privacy parameters. Then, the parameters
of a probabilistic graphical model are estimated based on the noisy measures.
Finally, the estimated model is sampled to generate an anonymised dataset. This
ensures the privacy of individuals in the dataset while allowing the synthetic data
to retain the properties of the original data.
Methods based on generative neural networks Generative neural networks
are used to generate data that resembles the features of the original data [29].
Differentially private stochastic gradient descent (DP-SGD) is used to train the
models to achieve DP. This includes adding noise to the gradients and clipping
them to ensure that the model does not learn exact copies of data points in the
original dataset.

3 Approach: DP-ELCA

DP-ELCA, as shown in Figure 2, guarantees (ϵ, δ)-DP for the control flow and
the case attributes, while ensuring the utility of the anonymised event log by
keeping the statistical properties of the original event log.

3.1 Transforming the Event Log to Tabular Data

The event log is transformed into a tabular data format by aggregating the
event log on the case level. Each case in the event log corresponds to a row in
the tabular data and each row contains a list of activities, i.e. the variant, and
the case attributes.

Definition 3 (Aggregated event log). Let L be an event log and X the
tabular dataset constructed from L. For each tuple (σi, cai) ∈ L, a datapoint
xi ∈ X is created. A datapoint is the concatenation of the numerical repre-
sentation of the trace variant cvi = f(σi) with k case attributes in cai. Thus,
xi = cvi ◦ catt

1

i ◦ catt2i ◦ · · · ◦ cattki .

Fig. 2: Overview of the DP-ELCA.
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3.2 Privacy implications of trace variants for private tabular data
generation

In traditional tabular data generation settings, it is assumed that the domains
of the columns of the dataset are public knowledge, meaning that for a dataset
X with l columns and n rows, dom(cj) for j ∈ [l] are publicly known. The al-
gorithms are applied to datasets where the usual range of values or categories
within the columns are known and do not depend on the dataset, e.g., the range
of blood pressure measurements or categories of diseases. For a categorical col-
umn dom(cc), it is assumed that there are many more rows of data than the
number of categories (|dom(cc)| << n).

Given these assumptions, differentially private TDG algorithms reproduce
the exact domains of the original dataset in the generated data (dom(cj) =
dom(cpj ), j ∈ [l]). For datasets that are derived from event logs as defined in
Definition 3, this assumption of independence holds for the columns catt

k

, i ∈ [k]
that contain data taken directly from the case attributes. However, for cv, which
contains the categories of the trace variants, this assumption does not hold. The
domain of the trace variants dom(cv) is dependent on the traces contained in
the event log.

Consider a scenario where an attacker knows the trace variant related to an
individual and knows that only this individual could produce this trace variant.
Then there are two ways how the attacker could infer information:

(1) If the individual is in the event log, the anonymised event log would contain
cases with such a trace variant. In that case, the attacker could infer that
the individual is included in the event log.

(2) If the individual is not in the event log, the anonymised event log would not
include cases with such a trace variant. In that case, the attacker could infer
that the individual was not part of the event log.

This scenario illustrates that information about an individual could be leaked
if the algorithm does not change the domain of the attributes in the output
(dom(cv) = dom(cpv)). The same problem holds for infrequent trace variants
where the existence of a group of individuals in the dataset could be leaked.
Therefore, filtering infrequent trace variants is needed to ensure privacy. Note
that the information leakage is independent of the privacy budget (ϵ, δ) because
it has no influence on the domain produced by the TDG. We showed that after
filtering out infrequent traces the attacker cannot single out an individual or a
group of individuals as described above.

We conclude that directly applying traditional tabular data generation ap-
proaches is possible but needs a filtering step beforehand. For this reason our
approach applies a DP trace selection algorithm [23] before applying the TDG.

3.3 DP-ELCA

The framework F receives an event log L as input and generates a differentially
private event log Lp as output. Figure 2 shows the four steps of the frame-
work. First, for each case, the sequence of activities and the case attributes
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are extracted from L. Next, infrequent sequences of activities are filtered out,
using [23], and a table is created. Second, a TDG is trained to estimate the sta-
tistical properties of the tabular data. Third, synthetic tabular data is sampled
from the estimated model. The generated tabular data is then transformed into
an event log containing the sequences of activities and case attributes. Next, we
introduce each of the steps in more detail.

Transform event log to tabular data. This step involves the transformation of
the event log L to a tabular dataset X. According to Definition 3, the tabular
dataset is constructed by aggregating the event log by case identifier. We build
a look-up table to convert the trace variants into their numerical representation.
Further, we let the user choose which case attributes to include in the tabular
dataset X. Any directly identifying information, such as case IDs or patient IDs,
is omitted during the aggregation process.

Apply differential privacy to trace variants. After constructing the tabular dataset
X from the previous step, we limit the trace variants cv to a (ε, δ)-differentially
private selection of trace variants. This ensures that no information leakage oc-
curs, as discussed in Section 3.2. We use the TraVaS algorithm proposed by [23]
to obtain a set c̃v of (ε, δ)-differentially private trace variants. By removing all
rows where the trace variant is not in the set c̃v from the tabular dataset X, we
obtain a new tabular dataset X̃.

Apply tabular data generation algorithm. This step takes the tabular data set
X̃, applies a TDG A and returns the anonymised tabular dataset Xp. As de-
fined in Section 2.4, we denote the application of the TDG by Xp = A(X̃).
After this step, Xp satisfies (ε, δ)-DP, given that A guarantees (ε, δ)-DP. Note
that any tabular data generation method that guarantees (ε, δ)-DP can be in-
terchangeably used. Some methods additionally require the user to specify types
for the columns in the dataset. This is abstracted in the framework and must be
specified once in the beginning for each case attribute in the event log.

Rebuild event log. The generated tabular data can be transformed back into an
event log format by creating a case for each row in the generated tabular dataset
Xp. For each row, a case is created that is annotated with the information from
the case attributes and corresponding activity from the variant information.
Based on the post-processing theorem of DP [4], the privacy guarantee of the
anonymised dataset is preserved under any data transformation that does not
involve additional queries to the original data. This means that any derived event
log from Lp remains differentially private. Thus, improving the data utility after
generation, e.g. by removing impossible combinations of case attributes, does
not violate the privacy guarantee.

Calculating the final privacy budget. The framework takes as input two privacy
budgets (εTraVaS, δTraVaS) and (εA, δA). Both budgets are used to ensure (ε, δ)-
DP for the final event log. The output from the first mechanism, TraVaS, is used
as input for the TDG. Therefore, instead of using the sequential composition
theorem, the resulting composed privacy budget (ε, δ) needs to be calculated
using the k-fold adaptive composition theorem as in Theorem 1.
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Fig. 3: Earth mover’s conformance for values of ε.

4 Evaluation

This section evaluates the results of DP-ELCA when applying it to three real-
life event logs using three different TDGs. The resulting anonymised event logs
are evaluated regarding the similarity of the stochastic process behaviour, case
attributes and the relationships within the event log to the original event logs.
Further, each combination of tabular data generation is evaluated for different
privacy budgets (ε ∈ {1.1, 2, 2.5, 4, 11}, δ = 0.75. We set (εTraVaS, δTraVaS) =
(0.1, 0.5) and δ̃ = 0.0001. Each combination of event log, TDG and privacy
budget is run five times to account for the non-determinism of the TDG.

We choose PrivBayes [31], MST [18] and DPGAN [29] as TDGs, based on
the availability of the implementation of each algorithm and the results in the
literature [27]. For PrivBayes and DPGAN we use the implementation in the
framework Synthcity [21]. MST is implemented in the framework Smartnoise-
sdk github.com/opendp/smartnoise-sdk.
Stochastic process behaviour. We use the earth mover’s conformance (EMC) [16]
to measure the similarity of the stochastic process behaviour between the original
and anonymised event log. This metric quantifies how closely the distribution of
trace variants in the anonymised log matches the original distribution, using a
value d ∈ [0, 1]. Figure 3 shows the results we obtained where an earth mover’s
conformance of 1 signifies perfect conformance. We observe a high conformance
of the anonymised process behaviour to the original process behaviour. Further,
MST produces better results for the traffic fine event log and the BPIC13 event
log. The output from TraVaS is part of the input for the TDG algorithm in our
framework. When comparing its EMC to the EMC of the TDG algorithms, we see
only a slight decrease in conformance for the best TDG algorithms. Additional
results for precision and fitness values are shown in [28].
Descriptive statistics of case attributes. Table 1 shows the statistical properties
for the Sepsis event log for MST. We observe that for stricter privacy budgets
the means and variances of the case attributes deviate more from the values of
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MST
ε µage µinfectionsuspected µhypotensie µinfusion µoligurie µhypoxie

orig 70.08 ± (17.36) 0.81 ± (0.39) 0.05 ± (0.22) 0.76 ± (0.43) 0.02 ± (0.15) 0.02 ± (0.14)
11.0 66.77 ± (19.34) 0.67 ± (0.47) 0.03 ± (0.18) 0.62 ± (0.49) 0.02 ± (0.14) 0.02 ± (0.14)
4.0 65.25 ± (20.26) 0.67 ± (0.47) 0.03 ± (0.18) 0.61 ± (0.49) 0.04 ± (0.19) 0.02 ± (0.15)
2.0 55.64 ± (21.86) 0.67 ± (0.47) 0.05 ± (0.21) 0.62 ± (0.48) 0.04 ± (0.19) 0.04 ± (0.17)
1.5 55.66 ± (21.63) 0.70 ± (0.45) 0.05 ± (0.19) 0.62 ± (0.48) 0.05 ± (0.15) 0.02 ± (0.08)
1.1 55.27 ± (21.55) 0.51 ± (0.50) 0.50 ± (0.50) 0.50 ± (0.50) 0.51 ± (0.50) 0.40 ± (0.40)

Table 1: Means and standard deviations for different ε for Sepsis.
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Fig. 4: Process behaviours’ correlation with case attributes for Sepsis.

the original event log. PrivBayes and DPGAN do not show such a clear trend
with the values, as shown in [28]. We find that the results for the different TDG
algorithms do not differ significantly. However, in some cases, DPGAN fails to
reproduce the distribution of binary case attributes.
Correlation process behaviour - case attributes. To test how our approach influ-
ences the relation between process behaviour and case attributes, we measure
this correlation using [14] for several values of ϵ. Figure 4 shows the results for
the Sepsis event logs, the other results are shown in [28]. We see that all TDG al-
gorithms reproduce the existing correlations in the original event log. However,
MST and PrivBayes produce more stable results than DPGAN, which devi-
ates in some cases from the original values, especially for lower privacy budgets.
Further, we see a higher variance in the results of MST for the lowest privacy
budget.
Correlation between case attributes. We compare the Pearson correlation coeffi-
cient of the numerical case attributes between the original and anonymised event
logs. Figure 5 shows the correlations between the case attributes of the traffic
fine event log. We find that the MST algorithm underestimates the correlations,
while the PrivBayes algorithm overestimates them. DPGAN is missing due its
long run times for large event logs and computational limitations. The traffic fine
event log is the only one of the chosen event logs containing multiple numerical
case attributes.
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5 Related Work

Several papers argue for privacy in process mining by highlighting the impor-
tance of protecting individuals’ data [1,6]. A direction of research is to develop
algorithms to provide group-based privacy guarantees, e.g. k-anonymity [26],
for event logs [11,20,22]. These methods differ to our approach in the privacy
guarantee given for the anonymised event log.

DP has been applied to anonymise event logs in process mining. Prefix-based
methods utilise a noisy prefix tree to anonymise the trace variants [17]. This
potentially introduces new, non-original trace variants. To limit this, the con-
struction of the prefix tree can be guided using a score function that is derived
from the usefulness of the possible trace variants [9]. Similarly, methods based
on Deterministic Acyclic Finite State Automata (DAFSA) add noise to the tran-
sition frequencies [7]. This reduces the spent privacy budget while maintaining a
high utility, which is achieved by combining the results of applying the algorithms
to subsamples of the event log [5]. A method for trace variant anonymisation
using a generative adversarial network has been proposed [24]. However, this ap-
proach does not filter out infrequent trace variants or modify them, thus posing
re-identification risks, see Section 3.2. More recently, TraVaS, the adoption of
a differentially private partition selection algorithm for trace variants, was pro-
posed that enables the publication of unmodified trace variants where the noisy
counts are above a certain threshold [23]. All of the before mentioned approaches
to guarantee DP to event logs only include control flow information and no addi-
tional information in the anonymised event logs. Finally, Fahrenkrog-Petersen et
al. [10] propose a two-step approach that anonymises control flow and adds con-
textual information. This method assumes the independence of case attributes,
limiting its applicability to real-world logs. Our framework builds on the TraVaS
approach, further enhancing the utility by using TDG to anonymise dependent
case attributes.
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6 Conclusion

This work proposed DP-ELCA, a differentially private framework, to anonymise
event logs with case attributes ensuring (ε, δ)-DP while ensuring data quality.
We make use of TDG algorithms that provide differential privacy for tabular
data. Further we discuss privacy implications when using TDG algorithms on
event logs and propose to filter the event log based on a differentially private
set of trace variants obtained by using TraVaS. This allows for the release of
the anonymised event logs with dependent case attributes. The k-fold adaptive
composition theorem is used to compute the resulting privacy budget.

The evaluation of three real-life event logs shows that of the chosen TDG
algorithms, the MST algorithm yields the best results in terms of the similarity
of the anonymised event log to the original event log. In some cases, however,
a trade-off between privacy and utility can be noticed. A lower privacy budget,
i.e. a stronger privacy guarantee, decreases the similarity of the original and
anonymised event log.

The framework’s flexibility in the choice of the TDG algorithm ensures that
future advancements in the field can be leveraged. Further evaluation with other
TDG algorithms and systematic evaluation of hyperparameters could improve
the framework’s performance. Additionally, evaluation with other real-life event
logs or controlled synthetic event logs could reveal further strengths and weak-
nesses. An avenue for future work lies in extending the framework to include
additional dimensions, such as timestamps or more granular event attributes.
Additionally, the task of choosing the right epsilon value balancing the trade off
between privacy and utility could be investigated and methods to detect suitable
privacy budgets developed.
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