
Predictions in Predictive Process Monitoring
with Previously Unseen Categorical Values

Johannes Roider1, Weixin Wang2, Dario Zanca1,
Martin Matzner2, and Bjoern M. Eskofier1

1 Machine Learning and Data Analytics (MaD) Lab,
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

johannes.roider@fau.de
2 Chair of Digital Industrial Service Systems,

Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany

Abstract. Predictive process monitoring (PPM) methods provide users
with real-time predictions about ongoing process instances. Machine
learning models used for such tasks do not account for data variability,
such as the occurrence of previously unseen categorical feature values.
Concept drift adaptation solutions are suggested in such scenarios. How-
ever, adapting to new feature values requires time and a sample size
large enough to train a well-generalizing model. Still, users expect seam-
less communication during the timeframe between the first occurrence
of a new value and the availability of an updated model. Dedicated solu-
tions are needed since encoding techniques like one hot encoding cannot
handle previously unseen values by default. In this work, we first intro-
duce and discuss possible solutions from a business perspective, ranging
from temporary shutdowns to dedicated manual and technical solutions
for an uninterrupted continuation of predictive services. Next, we present
five variants for one hot encoding to handle previously unseen categorical
values. This is followed by a case study using six real-world event logs
and two machine learning models, XGBoost and LSTM, to identify the
variants that produce the most reliable remaining time predictions. The
study also includes the evaluation of two baseline models as an alterna-
tive to the machine learning models. The results show that previously
unseen categorical values can be handled on a technical level without
severely affecting the remaining time prediction quality. However, future
research is required to provide more practical recommendations.

Keywords: Predictive Process Monitoring · Remaining Time · Machine
Learning.

1 Introduction

Predicting the remaining time of business processes is a major task in predictive
process monitoring (PPM), next to outcome and next activity prediction. To
provide remaining time prediction services, machine learning models are first
trained on historical data (offline phase) and then deployed and applied to real-
time streaming data (online phase) [2].



2 J. Roider et al.

Users of predictive services expect an uninterrupted, consistent prediction
quality. However, business process data is subject to change over time. Examples
include the occurrence of new activities, customers, or products over time. These
are examples of data variability on the level of categorical values [7]. One solution
to such concept drifts discussed in previous work is to (re)train machine learning
models with the new data [6], [10]. However, there are two practical challenges:

1. When a previously unseen categorical value is encountered, there are no
ground truth labels available to (re)train a model. Still, predictions are ex-
pected by end users.

2. Machine learning models need a sample size large enough in order not to
overfit to the training data. Even if a small sample size with ground truth
labels is available for new categorical values, there is a risk that a (re)trained
model overfits and produces low-quality predictions. Collecting a certain
amount of data before (re)training a model is required.

In both scenarios there is a gap in time where new categorical values occur
but a machine learning model that incorporates them is not available. Predic-
tive service providers are challenged to bridge this time interval without nega-
tively impacting user satisfaction. Therefore, we list and discuss possible solution
strategies from a business perspective in Sec. 4.

Challenges with previously unseen categorical values also arise on a technical
level. Many machine learning models require specifying the number of distinct
values for categorical features in advance. However, it is not foreseeable whether
and how many new values will occur in the future. If a new value occurs during
the online phase that has not been considered in the offline phase, it can lead to
service disruptions.

For these reasons, our evaluations focus on previously unseen categorical
values occurring over time and its handling with one hot encoding. This encoding
technique is commonly used to encode categorical features. In Sec. 5, we discuss
one-hot encoding and the reasons of technical failures with new categorical values
in detail. Furthermore, we present five specific ways to encode previously unseen
categorical values with one-hot encoding. This is followed by a benchmark study
in the context of remaining time prediction. We evaluate the proposed solutions
with two variants of XGBoost and a Long Short-Term Memory (LSTM) model
on six real-world datasets and compare them to the performance of two simple
baselines presented in prior literature.

The remainder of this work is structured as follows: In Sec. 2 we discuss
related work, followed by general concepts relevant to this work in Sec. 3. New
concepts are introduced in Sec. 4 by discussing possible solution strategies from
a business perspective, and in Sec. 5 by presenting one-hot encoding schemes for
previously unseen categorical values. In Sec. 6 we outline our experiments which
are discussed in Sec. 7. In Sec. 8 we conclude our work.



Predictions with Previously Unseen Categorical Values 3

2 Related Work

Predicting the remaining time has been studied in several works. It has been
analyzed with structured reviews and benchmarking methods. Verenich et al. [13]
conducted a review and benchmark study where they compared process-aware
methods, variants of XGBoost, and a neural network based method. They found
that DA-LSTM, introduced by Navarin et al. [8], outperforms process-aware and
classical machine learning methods. Rama-Maneiro et al. [11] focused on deep
learning in their benchmark study. They compare four methods for remaining
time prediction and also determined DA-LSTM as the best method. Recently,
classical methods were investigated again due to their lower computational needs.
Aalikhani et al. [1] compare four different methods in their regression-based and
classification-based counterparts. The latter methods require a discretization of
labels, but they often outperform regression-based models. Oyamada et al. [9]
compare three models with a focus on time-related feature engineering. They
find that LSTM outperforms the classical methods, but classical methods can
be improved with a careful choice of time-related features.

Few works in PPM have motivated the problem of new categorical values dur-
ing the online phase. Mangat and Rinderle-Ma [7] propose two solution strategies
for one-hot feature encoding (void encoding and reserving additional capacities).
However, they only consider void encoding and not different variants during
their evaluation for predicting the next activity. Pasquadibisceglie et al. [10] use
word2vec from the Gensim package3 since it provides automatic handling of new
categorical values. However, the original implementation of Word2vec does not
support new values, and the Gensim package provides one specific implementa-
tion. There might be a variety of possible solutions available. The same applies
to one-hot encoding, for which we will discuss several variations.

Other domains also encounter the challenge of handling previously unseen
categorical values. Dedicated work exists in the field of recommendation systems.
An overview of encoding strategies is given by Shiao et al. [12]. Some of the
proposed solutions overlap with the work by Mangat et al. [7], for example both
papers propose zero encoding. Shiao et al. [12] propose further solutions like
mean embedding and random embeddings, some of which we consider in Sec. 5.

3 Prerequisites

Data The data used in predictive process monitoring are event logs. Event logs
are sets of sequences, also called cases or traces. Each trace is a sequence of
events. Events are standardized data structures which have specific attributes
assigned. Common attributes are case identifiers, activities, and timestamps,
which identify to which trace an event belongs, the task that is being performed,
and when it has been performed, respectively. Further optional attributes, called
context attributes, can be assigned. Examples include resources or costs.

3 https://radimrehurek.com/gensim/



4 J. Roider et al.

Training samples called prefixes are generated from each trace to train a
machine-learning model. For each event in the trace one prefix is created by
including the whole history of the trace up to this specific event. The corre-
sponding remaining time label is represented by the difference in time from the
last event of the trace to the specific event at hand.

Prefixes are preprocessed to reflect a data format which can be utilized by
machine learning algorithms. The specific representation depends on the algo-
rithm used. We differentiate between numerical and categorical features. Nu-
merical features take on continuous values. Categorical features are discrete.
While numerical features can be directly utilized, optionally with a predefined
normalization beforehand, categorical features often require specific encoding.

Encoding of Categorical Features The encoding of categorical values de-
pends on the machine learning model employed. Tree-based models like random
forests or XGBoost process categorical features by determining splits in individ-
ual trees directly on the discrete feature values. Another approach for XGBoost
is to transform categorical features first into a numerical representation like
one-hot encoding. In one-hot encoding, a feature vector is created whose length
corresponds to the number of categories observed in the dataset at hand (see
Sec. 5). The type of encoding for tree-based methods depends heavily on the
implementation. For example, XGBoost4 up to version 1.6 did not support di-
rect categorical encodings but required a numerical representation like one-hot
encoding. Scikit-learn5, a commonly used library for tree-based methods like
random forests, requires numerical representation and direct categorical splits
are not supported as of the latest version 1.5.

Neural networks require a numerical encoding and one-hot encoding is often
chosen. Since one-hot encoding is applicable with both, XGBoost and neural
networks, and since it was also used in prior literature (see Verenich et al. [13]),
we conducted our experiments with one-hot encoding.

4 Handling Previously Unseen Categorical Values from a
Business Perspective

We motivated in Sec. 1 the problem of previously unseen categorical values.
From a business perspective this should be handled without negative impact on
the satisfaction levels of end users. Service providers need to be aware of possible
solutions and cope with the challenge based on their individual end users’ needs.
We have identified four different solutions strategies:
1. Disable the service (partially): To avoid inaccurate predictions, the service

is disabled for samples where previously unseen values are encountered. A
more rigid approach is to deactivate the service completely. The service is
resumed after a large enough sample size for the new value is collected, a
new model is trained, evaluated and deployed.

4 https://xgboost.ai
5 https://scikit-learn.org



Predictions with Previously Unseen Categorical Values 5

2. Escalate predictions: Traces containing new values are escalated to human
experts. These take over the task and provide a prediction based on their
domain knowledge. While the service can be continued, extra resources are
required to uphold it. Furthermore, human interventions take more time to
finish, and dedicated user interfaces are needed to support the manual work.

3. Exclude features with previously unseen values: A backup model is used
which does not use the affected feature. This can be a model using all other
available features or a simple baseline solution predicting a standard value.
This ensures that the service is continued fully automated, but there is a
high risk that the quality of predictions drops. Furthermore, backup models
need to be maintained to be immediately available.

4. Encode feature value as "new value": Use the deployed model, but provide an
input signal that there is a previously unseen categorical value encountered.
There are different possibilities for such an encoding which we discuss in
Sec. 5. Advantages are that the service is not interrupted and there is only
one model to be maintained. However, such a strategy can lead to a reduced
prediction accuracy.

Table 1. Solution strategies to handle previously unseen categorical values

Mitigation Strategy Advantages Disadvantages

1. Disable service
(partially)

No risk of low
quality predictions;

Service interruptions can
affect customer satisfaction;

2. Escalate
predictions

High quality
predictions;

Time consuming due
to manual work;
Risk of inconsistent predictions
(different experts make different
predictions);
Escalation procedure and
additional user interfaces needed;

3. Exclude
categorical
feature

Fast response
times;

Risk of reduced
prediction quality;
Additional model(s)
to be maintained;

4. Encode
"new value"

Fast response
times;
Only one model
to be maintained;

Risk of reduced
prediction quality;

The derived advantages and disadvantages are summarized in Tab. 1. The right
strategy to be chosen depends on individual business requirements. If high-
quality predictions are paramount, strategies 1. and 2. might be preferred. If
fast response times and no interruptions are required while reduced accuracy
can be tolerated, strategies 3. and 4. may offer the better choice.

In our case study, we will compare strategies 3. and 4. We investigate whether
models receiving the input signal of a "new value" can outperform simple baseline



6 J. Roider et al.

models or if they fail to produce reliable predictions. This will give practitioners
insights on whether technical solutions are feasible.

5 Encoding of Previously Unseen Categorical Values

Let’s assume a categorical feature for which n distinct values occur in the training
set, i.e. the set of distinct values is defined as Ctrain = {c1, c2, ..., cn}. Next, we
define a bijective function f that maps a value cj to a unique integer ij , i.e.
f : Ctrain → I where I = {0, 1, ..., n− 1}. In other words, each categorical value
can be mapped uniquely to exactly one integer value, and vice versa.

For one-hot encoding, we create a feature vector V with length n and set all
values to 0 (zero), i. e. V = [v0, v1, ..., vn−1] where ∀vm ∈ V : vm = 0. Given
attribute value cj , we obtain ij by applying f : cj → ij and set ∀vm ∈ V : vm =
1, if m = ij . As an example, let’s assume Ctrain = {A,B,C,D}. Function f gives
the following mappings: A → 0, B → 1, C → 2, D → 3. The one-hot encoded
feature vector for event C is given by V = [0, 0, 1, 0].

Let’s now assume a test set ctest such that Ctest \ Ctrain ̸= ∅. That means a
new feature value ck occurs in the test set which is not present in the training
set. A mapping by f for ck is not defined. In technical implementations such an
approach can lead to execution errors. Therefore, a contingency method needs
to be established on how to encode previously unseen values to avoid such errors
and ensure the continuation of a service.

We present solutions to situations where ck /∈ ctrain ∧ ck ∈ ctest and ck
needs to be one-hot encoded. The corresponding example assumes that Ctrain =
{A,B,C,D} and Ctest = {A,B,C,D,E} where value E represents ck. Zero en-
coding and Dummy encoding were previously mentioned by Mangat and Rinderle-
Ma [7] and denoted as Void encoding and Additional Capacity, respectively.

Zero Encoding If there is no mapping defined by f for ck, the one-hot encoding
for ck is defined as a zero vector, i.e. V = [v0, v1, ..., vn−1] where ∀vj ∈ V : vj = 0.
Encoding value E corresponds to the following vector: V = [0, 0, 0, 0].

Dummy Encoding With this encoding we reserve an additional position in
the one-hot encoded vector, such that V = [v0, v1, ..., vn]. During training, vn
will always be 0. On an algorithmic level, we then set vn = 1 in case f is not
defined for ck. In our example, value E is therefore defined as V = [0, 0, 0, 0, 1].
Please note that this encoding is used for any new categorical value. If another
value F occurs, the encoding is also V = [0, 0, 0, 0, 1].

One-over-n Encoding The idea for one-over-n encoding is to provide an un-
informative input to a model, similar to zero encoding, but to keep the sum
of all elements of the input vector to 1, i.e.

∑n−1
j=0 vj = 1, where vj ∈ V . In-

stead of 0, we assign to each vj ∈ V a value of 1
n , i.e. V = [v0, v1, ..., vn−1]

where ∀vj ∈ V : vj =
1
n . Categorical value E in our example would therefore be

encoded as V = [0.25, 0.25, 0.25, 0.25] since n = 4.



Predictions with Previously Unseen Categorical Values 7

Distribution-based Encoding In distribution-based encoding we provide for
each element in the one-hot encoded vector the relative frequency of the corre-
sponding feature value. In order to do so, we define a function count(cj) that
counts for each value cj ∈ Ctrain the number of occurrences in the training set,
i. e. count : C → N0. The sum of all events is defined as M =

∑n
j=1 count(cj)

where cj ∈ Ctrain. For any vj ∈ V we retrieve the distribution-based encoding
with vj =

count(f−1:ij→cj)
M where ij ∈ I and f−1 is the inverse of f such that we

retrieve the original categorical value given an index of the one-hot encoding. In
other words, we count for each categorical value how often it occurs and then
divide it by the total number of events in the training set.

Let’s assume that count(Ctrain) defines the following mappings: A → 100, B →
200, C → 400, D → 300. Encoding previously unseen value E gives the follow-
ing one-hot encoded vector: V = [0.1, 0.2, 0.4, 0.3]. This encoding has the same
property as one-over-n encoding such that

∑n−1
j=0 vj = 1.

Random Encoding To benchmark the other encoding techniques, we define
random encoding which we assume to produce less accurate results. The one-
hot encoding is defined as V = [v0, v1, ..., vn−1] where we sample uniformly and
independently any vj ∈ V in the value range of [0, 1) where vj ∈ R.

6 Experimental Setting

In our experiments we use XGBoost and LSTM’s, representing state-of-the-art
classical and deep learning methods, as outlined in Sec. 2. XGBoost has the
advantage of fast computations with competitive performance. LSTM neural
networks are computationally demanding, but show high prediction quality.

We trained the models with two features: Activities and a time-related fea-
ture. Activities represent the categorical feature in our study due to its consistent
presence in all event logs. The time related feature is numerical and indicates
for an event the time that has passed since the process has started.

We use six publicly available event logs6 which show an occurrence of new
activities over time. We preprocessed them such that they only contain com-
pleted cases and split them temporally into training, validation and test sets.
64% of the oldest cases, determined by the timestamp of the first event, are used
for training, the next 16% represent the validation set and the last 20% of cases
are used for testing. This is close to a real-life situation in which new activities
occur over time. The datasets as well as statistics on the test sets relevant to
our study are listed in Tab. 2.

To encode the activity feature we use one-hot encoding. We determine the
number of activities for one-hot encoding on the training set solely. If a new
activity occurs in the validation set we encode it as "unknown". We have not
considered additional values from the validation set for one-hot encoding during
training since this would effectively lead to dummy encoding for these activities.
6 Available at https://data.4tu.nl/



8 J. Roider et al.

To avoid this danger of mixing different encoding techniques, we defined "known"
activities strictly on the training set. Since we apply this approach consistently
to all models, it allows for a fair comparison.

Table 2. Test Set Statistics. First row: Total number of prefixes in the test set. Second
row: Number of prefixes for which at least one new activity is present. These are
the samples which are considered in our experimental evaluation. Third row: Average
proportion of events which are previously unseen in the affected prefixes.

Dataset 2015_1 2015_2 2015_3 2015_4 2015_5 helpdesk

Num. Prefixes 5,827 8,526 11,526 4,699 10,896 3,415
Num. Affected Prefixes 5,104 3,640 4,777 1,516 5,730 207
Avg. Percentage of New
Activities per
Affected Prefix

16.41 4.75 4.01 5.10 5.67 29.04

We trained two variants of XGBoost models. One with with aggregation
encoding and one with last-state encoding. Aggregation encoding embeds the
relative frequency of how often an activity is present in the prefix and the mean
of the time-related feature over all events in the prefix. For last state encoding
we applied one-hot encoding to the last activity and appended its associated
time-related feature. We used the parameters of the standard implementation
of the XGBoost package. The only exception is the loss function, for which we
used the mean absolute loss instead of a square error loss.

For the LSTM model, we defined a fixed setting with three LSTM layers
with a hidden size of 100 neurons each. As optimizer we use NAdam with a
learning rate of 0.001. The hyperparameters are determined based on the insights
from prior studies [8], [13]. The input is provided as tensor-encoded vector [13]
and we use the mean absolute error (MAE) as optimization metric. For the
implementation we built on a generic codebase by Liessmann et al. [5]7.

We evaluated all results with the mean absolute error (MAE). Further-
more, we trained each model variant five times and calculated the average MAE
achieved over the five runs. We repeated training because random factors like
the order of the data can influence a model’s convergence during training. To
average out random effects we train and evaluate each model five times.

We evaluated two baseline models to cover Solution 3. as presented in Sec. 4.
The first baseline by van der Aalst et al. [3] simply predicts half of the average
runtime of traces in the training set. The second baseline by Ceci et al. [4] uses
the time-related feature and predicts the difference between the average runtime
of traces in the training set and the time that has passed for the last event of a
prefix. We denote the approaches as baseline1 and baseline2, respectively.

Since previous work has shown that machine learning models outperform
simple baselines, we focused our analysis only on prefixes of the test set where
a previously unseen activity is encountered for any event. In this way we avoid
7 https://github.com/fau-is/ECIS24-TL4PM



Predictions with Previously Unseen Categorical Values 9

that good predictions for prefixes without new activities average out potentially
bad predictions when calculating the MAE.

7 Results and Discussion

The results of our case study are displayed in Tab. 3. The values show the mean
MAE across the five runs. Bold numbers indicate the overall best model for a
dataset. For the baselines, no encoding techniques are applied, therefore only
one number is reported.

Table 3. Results of benchmark study. Abbreviations: Dst: Distribution; Dm: Dummy;
N: One-over-n; Rnd: Randomg; Zro: Zero; b1: baseline1; b2: baseline2.

bpic2015_1

LSTM XGB
Agg

XGB
Last b1 b2

Dst 36.75 41.15 35.03

41.03
Dm 35.30 41.48 34.72

38.99N 33.03 39.80 34.59
Rnd 40.81 134.33 35.13
Zro 34.82 41.53 35.17

bpic2015_2

LSTM XGB
Agg

XGB
Last b1 b2

Dst 65.35 65.02 31.02

68.40
Dm 72.55 68.82 31.05

48.89N 64.10 64.37 31.14
Rnd 44.90 441.05 31.05
Zro 68.3 65.18 31.23

bpic2015_3

LSTM XGB
Agg

XGB
Last b1 b2

Dst 6.85 7.72 7.42

22.91
Dm 5.45 8.61 7.41

29.11N 5.61 7.35 7.41
Rnd 5.88 92.68 7.39
Zro 5.64 10.69 7.46

bpic2015_4

LSTM XGB
Agg

XGB
Last b1 b2

Dst 49.18 46.08 44.12

58.41
Dm 44.00 46.25 44.08

44.85N 47.07 46.29 43.95
Rnd 37.58 60.46 44.40
Zro 48.53 46.20 44.79

bpic2015_5

LSTM XGB
Agg

XGB
Last b1 b2

Dst 41.55 36.50 34.68

42.11
Dm 35.58 36.43 34.69

40.80N 34.51 36.94 34.78
Rnd 37.82 244.45 34.81
Zro 34.86 36.81 34.72

helpdesk

LSTM XGB
Agg

XGB
Last b1 b2

Dst 3.70 5.06 3.98

7.30
Dm 3.97 4.76 3.98

8.72N 3.85 4.76 3.98
Rnd 5.01 7.42 3.98
Zro 3.88 4.76 3.98

Comparing Machine Learning Methods to Baseline Methods The over-
all best model for a given dataset outperforms the two baseline models each time.
A variant of the LSTM model is the overall best model for the datasets helpdesk,
bpic2015_1, bpic2015_3, bpic2015_4, and bpic2015_5, however, with changing
one-hot encodings. For bpic2015_2, XGBoost (Last) performs best, whereas
most variants of LSTM and XGBoost (Agg) are outperformed by baseline1.
This shows that machine learning models are generally capable of handling pre-
viously unseen categorical values efficiently, compared to simple baseline models.
However, further research is required to determine the best suited model type
for a given dataset. We have not found any insights based on specific dataset
characteristics which explain the best methods for a given dataset.



10 J. Roider et al.

Robustness of Machine Learning Models to Encoding Techniques The
least deviation in MAE across different encoding techniques is shown by XG-
Boost (Last). The numbers in Tab. 3 are close to each other for each dataset.
XGBoost (Agg) produces the worst results with random one-hot encoding. One-
over-n encoding is the best approach for XGBoost (Agg) on 4 datasets and close
to the best-performing approach for bpic2015_3 and bpic2015_4. For LSTM the
results are less clear. Random encoding is the worst approach for the datasets
helpdesk and bpic2015_1. In Tab. 2 we show the average percentage of new
activities present in prefixes of the test set for which at least one new activity is
occurs. It shows the highest numbers for the datasets helpdesk and bpic2015_1
and it is a result of previously unseen activities being mainly present at the end of
traces. Therefore, we conclude that random encoding has a negative effect in pre-
fixes with many new activities. However, random encoding also produces the best
results with considerable distance for the datasets bpic2015_2 and bpic2015_4.
We could not not identify any unique dataset characteristic for these datasets
which differentiates them from others. Leaving random encoding aside we found
one-over-n encoding delivering stable results for LSTM. A future challenge is
to investigate the results obtained with random encoding further to allow more
specific recommendations to practitioners.

Comparison of Encodings over all Machine Learning Methods There is
no single approach that is clearly the best. Across all datasets, regardless of the
machine learning method, each encoding produces once the best result, except for
one-over-n encoding, which is best on two datasets (bpic2015_1, bpic2015_5).
However, we observed that one-over-n encoding produces for each model con-
sistently results which are competitive to the best performing one. The only
exception is given for LSTM when random encoding is best.

Discussion To minimize the overall risk of low performance with new cate-
gorical values, we recommend using one-over-n encoding. However, the type of
selected machine learning model is difficult to determine in advance. There are
scenarios in which one-over-n encoding can lead to low performance if the right
machine learning model is not chosen. The relatively good performance of last
state encoding indicates that the time-related features as well knowledge of the
last event are the most important features for accurate predictions, whereas
knowledge about all events of a prefix adds additional minor information for
predicting the remaining time. Providing complete traces could even lead to
overfitting, which is a possible reason for the good performance of the random
encoding for LSTM on datasets bpic2015_2 and bpic2015_4. For bpic2015_4
overfitting might even apply to the last activity where the performance of all
methods is close to the baseline models. This suggests that mainly the time-
related feature is informative in this case. For future studies we recommend
ablation studies to understand the importance of individual features such that
the effect of new categorical values can be isolated in more detail.



Predictions with Previously Unseen Categorical Values 11

Besides these challenges, we have found that machine learning models can
handle newly occurring categorical feature values and outperform simple base-
line models. Therefore, it is a viable alternative for practitioners to avoid addi-
tional maintenance and escalation overhead. One-over-n encoding showed stable
results. Still, open questions remain to provide fully informed recommendations.

8 Conclusion and Outlook

In this work, we motivated the need for solutions when concept drifts, represented
by previously unseen categorical values, occur over time. However, (re)trained
models are not immediately available for predictions. We have discussed four
solution strategies from a business perspective that can help practitioners de-
cide on a strategy based on the needs of their end users. Next, we focused on
technical solutions to maintain predictive services. We have presented five dif-
ferent one-hot encoding strategies and compared them in a benchmark study in
combination with LSTM models and two variants of XGBoost with two simple
baseline solutions. The results show that one-over-n encoding provides the most
promising results.

However, this study only represents a first investigation of the topic; further
research is required in the future to provide more practical insights. This includes
tackling limitations of our study. For example, only a small number of event logs
is available where new activities occur over time and most of them, namely the
bpic 2015 datasets, relate to the same underlying process execution. Also, we
focused our study only on two features, activity and a time-related feature, but
the complex interplay of several categorical features where new values occur over
time, but also numerical features, needs to be evaluated, especially in light of
recent suggestions of extending contextual data sources even further, for example
by using data from complete enterprise process networks instead of isolated
processes, as motivated by Weinzierl et al. [14]. Furthermore, our statistical
approach of training five versions of each model and calculating the average MAE
on the test set of these five models does not allow for statistically significant tests.
We highlight that our approach is more reliable than just training one model
variant which is mostly done in related literature. However, more runs will give
statistically more significant insights. Besides these limitations, further aspects
can be investigated in future research. Different encoding techniques such as
word2vec might be evaluated. Also, other model types and additional tasks for
PPM, like next activity prediction or outcome prediction, can be assessed.

Overall, we have motivated the need for handling previously unseen categor-
ical values during runtime. Practitioners need to decide if services are continued
and in which form. Technical solutions exist, but have not been compared with
each other previously. Our study suggests that these technical solutions can
provide reliable performance which are better than simple baseline solutions.
However, clear recommendations are hard to give at this point. To close this
gap, more research is required in the future.



12 J. Roider et al.

Acknowledgments. This study was supported by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) (grant number 456415646).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aalikhani, R., Fathian, M., Rasouli, M.R.: Comparative analysis of classification-
based and regression-based predictive process monitoring models for accurate and
time-efficient remaining time prediction. IEEE Access (2024)

2. van der Aalst, W.M., Carmona, J.: Process mining handbook. Springer Nature
(2022)

3. van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information systems 36(2), 450–475 (2011)

4. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion
time and next activity prediction of processes using sequential pattern mining. In:
Discovery Science: 17th International Conference, DS 2014, Bled, Slovenia, October
8-10, 2014. Proceedings 17. pp. 49–61. Springer (2014)

5. Liessmann, A., Wang, W., Weinzierl, S., Zilker, S., Matzner, M.: Transfer learning
for predictive process monitoring. ECIS 2024 Proceedings 4 (2024)

6. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process mon-
itoring. In: 2017 IEEE International Conference on Services Computing (SCC).
pp. 1–8. IEEE (2017)

7. Mangat, A.S., Rinderle-Ma, S.: Next-activity prediction for non-stationary pro-
cesses with unseen data variability. In: International Conference on Enterprise De-
sign, Operations, and Computing. pp. 145–161. Springer (2022)

8. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: Lstm networks for data-aware
remaining time prediction of business process instances. In: 2017 IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 1–7. IEEE (2017)

9. Oyamada, R.S., Tavares, G.M., Junior, S.B., Ceravolo, P.: Enhancing predictive
process monitoring with time-related feature engineering. In: International Con-
ference on Advanced Information Systems Engineering. pp. 71–86. Springer (2024)

10. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Darwin: An online
deep learning approach to handle concept drifts in predictive process monitoring.
Engineering Applications of Artificial Intelligence 123, 106461 (2023)

11. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep learning for predictive business
process monitoring: Review and benchmark. IEEE Transactions on Services Com-
puting 16(1), 739–756 (2021)

12. Shiao, W., Ju, M., Guo, Z., Chen, X., Papalexakis, E., Zhao, T., Shah, N., Liu, Y.:
Improving out-of-vocabulary handling in recommendation systems. arXiv preprint
arXiv:2403.18280 (2024)

13. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-
benchmark comparison of remaining time prediction methods in business process
monitoring. ACM Transactions on Intelligent Systems and Technology (TIST)
10(4), 1–34 (2019)

14. Weinzierl, S., Zilker, S., Dunzer, S., Matzner, M.: Machine learning in business
process management: A systematic literature review. Expert Systems with Appli-
cations 253 (2024)


