
Towards Accurate Predictions in ITSM: A Study on

Transformer-Based Predictive Process Monitoring

Marc C. Hennig1[0009-0005-6185-2623]

1 University of Applied Sciences Munich, Lothstraße 64, 80335 Munich, Germany
mhennig@hm.edu

Abstract. The accurate prediction of service process performance, particularly

in IT service management (ITSM), is critical for adhering to service-level agree-

ments and avoiding associated penalties. However, existing predictive process

monitoring solutions, predominantly based on recurrent neural networks, have

been found to be inadequate in handling ITSM processes. Notably, the heteroge-

neity in process artifacts and environments impairs process predictions. This re-

search proposes a novel transformer-based architecture to effectively handle IT

service process event logs. By integrating advanced positional encoding tech-

niques and distinguishing between static and dynamic attributes, a novel trans-

former architecture is evaluated using multiple publicly available ITSM event

logs. This architecture demonstrates its potential to deliver more accurate predic-

tions than LSTM models in terms of remaining time predictions. This work pro-

vides experimental results into the application of transformer architectures for

predictive process monitoring, paving the way for enhanced efficiency in ITSM.

Keywords: predictive process monitoring, transformer, GLU, ITSM.

1 Introduction

In today’s economy, the success of a service provider is increasingly tied to an organi-

zation’s ability to provide its processes in time [1]. Ensuring an efficient execution of

the underlying service processes is particularly relevant in this regard, as providers are

bound by contractual service-level agreements (SLA) [1]. SLAs usually involve severe

penalties in case of time or quality-related deviations, and adherence to them is an im-

portant performance indicator.

In this setting, service process instances benefit greatly from predictive insights of

the expected remaining time to facilitate decision-making and avoid time-related SLA

violations. Predictive process monitoring (PPM) has emerged as a tool for forecasting

the future states of ongoing process instances [2]. However, IT service management

(ITSM) processes, in particular, exhibit an inherent complexity due to heterogeneity in

artifacts [3] and process environments [4]. Additionally, their ad-hoc nature and reli-

ance on individual expertise complicate the accurate forecast of process instance

runtimes and outcomes, often leading to results that are too inaccurate for practical use

[4]. This underscores the need for innovative solutions in this area.

2 M. C. Hennig

These challenges in ITSM processes have hindered the widespread adoption of PPM.

Although many predictive process monitoring architectures have been created [2], only

a few have been successfully applied to ITSM event logs. Given this limited application

of predictive process monitoring in ITSM, there is a clear need for innovative ap-

proaches. This research addresses this need by designing a transformer architecture [5]

that can effectively handle complex IT service process event logs. The transformer ar-

chitecture [5] has replaced commonly used recurrent neural networks (RNN) and their

derivatives for many sequence-related tasks [6]. Still, it has yet to gain significant trac-

tion in PPM compared to other domains [2]. It is therefore assessed in this work, at-

tempting to answer the following research question: How can a predictive process mon-

itoring transformer architecture be designed to accommodate the intricacies of IT ser-

vice processes?

As part of a research project investigating how PPM can transform ITSM operations,

this work’s approach consists of three main parts. First, the literature regarding trans-

formers in PPM in terms of their architecture and the different approaches taken is an-

alyzed. Second, a transformer architecture is designed and implemented based on these

insights. Finally, the model is applied to event logs from ITSM’s incident management,

and the results are quantitatively evaluated to assess how techniques new to PPM can

be used therein, potentially outperforming other solutions. Due to its relevance for

highly operational incident management [4], the focus lies on the remaining time pre-

diction, contributing to a better understanding of transformers in PPM.

2 Research Method

In this work, design science research is applied, as described by [7], as the central

framework with the steps outlined in Fig. 1. The research problem is analyzed by re-

viewing the ongoing research on transformers in PPM and innovations from other do-

mains using transformers that might be transferable to PPM. A transformer architecture

is then designed and developed based on the insights from the literature research, the

special requirements, and the unique properties of ITSM processes outlined in the pre-

vious section. During the architecture development, the focus is explicitly laid on the

input preparation and positional encoding in addition to providing a ground-up expla-

nation of the different model components.

Fig. 1. Design science research framework following [7]

The results are subsequently demonstrated and experimentally evaluated using mul-

tiple publicly available event logs from ITSM, focusing specifically on applying a re-

producible preprocessing setup using strict temporal splitting [8] to ensure comparable

Literature
Review

Define
Requirements

Design & Develop
Artifacts

Prediction
Objective

Prediction
Method

Embed-
ding &

Pos.
Encoding

Model
Compo-

nents

Prepro-
cessing &
Splitting

Metric
Com-

parison

Result
Discussion

Demonstrate Artifact
Evaluate
Artifact

Explicate
Problem

 Towards Accurate Predictions in ITSM 3

results. The models are trained on the prepared event logs, and their performance is

measured using regression metrics appropriate for the remaining time prediction. Fi-

nally, the results are compared with baseline solutions to allow an interpretation of the

findings and the developed transformer architecture.

3 Research Background

PPM has traditionally depended extensively on RNNs, particularly Long-Short-Term

Memory (LSTM) networks, which are commonly used for their capacity to handle se-

quential data effectively [2, 9]. However, other architectures and use cases have con-

tinuously evolved. This study focuses on the usage of transformers in PPM, which is

motivated by both theoretical and practical benefits [5]. To achieve this, the existing

literature on the application of transformers in PPM is first collected and analyzed.

Transferable architectural features from other domains are then identified and contex-

tualized within the findings of prior studies to identify possible research gaps.

3.1 Transformer in Predictive Process Monitoring

Most earlier works in PPM use simpler transformer architectures consisting primarily

of single transformer encoders [10, 11] close to the original implementation [5]. The

ProcessTransformer [10] is particularly notable as it is an often-used baseline model

consisting of a transformer encoder and minimal preprocessing. Transformers have di-

versified in newer research, resorting to more specialized solutions. However, trans-

former encoders are still popular, while decoders remain a niche choice. Despite their

popularity in natural language processing, models like BERT [12] and GPT-2 [13] are

not widely used, possibly due to their low performance compared to later solutions [10].

Table 1. Overview of the work on PPM and transformers oriented on [2]

Ref. Network Type Seq. Encoding Attr. Handling Pos. Encoding Target

[14] Hybrid BiLSTM + Attention Dynamic – OUT

[11] Transformer Decoder – Fixed NA

[15] Hybrid LSTM + Attention – – NA, SEQ

[10] Transformer Encoder – Learned NA, NT, RT

[13] Transformer Decoder (GPT2) Dynamic Learned NA

[12] Transformer Encoder (BERT) – Learned NA, OUT

[16] Hybrid BiLSTM + Attention Dynamic – NA

[17] Transformer Encoder Dynamic Fixed NA, ATTR

[18] Hybrid LSTM + Attention Dynamic – NA

[19] Transformer Encoder – Custom NA

[6] Transformer Encoder Dynamic Fixed, Learned NA, RT

[20] Transformer Encoder Dynamic Learned NA, NT, RT

The strategies for attaining improved prediction performances vary widely. Hierar-

chical architectures, either as a hybrid of RNNs with the transformer’s central attention

4 M. C. Hennig

mechanism [15, 16] or stacked attention over different granularities [6], outperformed

several earlier solutions. This might be due to their improved ability to capture local

process structures and long-range dependencies, which is hypothesized to improve

model performance [21]. Additionally, the integration of further attributes might con-

tribute to the performance [22]. While not hierarchical, other approaches have adopted

multiple encoders [17], mainly to capture event-specific, dynamic attributes. Thus,

these attributes are integrated as concurrent sequences in addition to the activity. Inter-

estingly, while dynamic attributes are often included, case-specific, static attributes and

their separate handling remain underexplored. They are often sequentialized and treated

similarly to the dynamic attributes, despite positive indications for their separate han-

dling from other domains [23].

The next activity (NA) classification is the most popular choice regarding the pre-

diction targets with transformers, as seen in Table 1. In contrast, regression problems

like the remaining time (RT) and next timestamp (NT) prediction are far less commonly

approached. Predicting specific process instance outcomes (OUT) or other attributes

(ATTR) is also less often performed, similar to sequence-to-sequence (SEQ) predictions

[2]. Various transformer architectures have been developed, with a trend toward multi-

ple attentions for dynamic attributes. This suggests a gap in the current research on

investigating the benefits of distinctly integrating static attributes to enhance the pre-

diction performance of PPM models.

3.2 Architectural Features in Transformer Models

Transformers are widely used in other domains, leading to several improvements that

could benefit PPM. One key innovation is in positional encodings, where supplemen-

tary information beyond the absolute position of an element in a sequence enriches the

data. While encoding static context information through additional domain knowledge

has been described [19] in PPM, most works use fixed or learned positional encodings,

as shown in Table 1. From outside PPM, timestamp encoding seems especially relevant

and has succeeded in transformer-based time series predictions [24]. Also, it is currently

suspected that relative encodings might outperform commonly used absolute encod-

ings, leading to the development of combinations [25] to mitigate disadvantages.

Another essential aspect is converting transformer layer outputs from two-dimen-

sional matrices into single vectors suitable for downstream prediction tasks. Standard

techniques in PPM include average pooling layers [10, 20], weighted summation of

outputs [16], and flattening [6]. In natural language processing, hidden states are often

extracted based on a special token or the last position [12], but techniques vary widely.

Additionally, the enhanced performance of transformers using gated linear units

(GLU) and gated residual networks (GRN) is notable. The Temporal Fusion Trans-

former [23], which employs these techniques to incorporate static attributes and en-

hance self-regularization, is a well-known example. In other studies, GLUs have also

been shown to benefit transformers [26], suggesting their utility for PPM. None of these

approaches have been applied to PPM, indicating an actionable research gap.

 Towards Accurate Predictions in ITSM 5

4 Model Development

Based on the analysis of the related research, it was identified that integration methods

for static attributes are missing, especially, and that the use of GLUs and alternative

positional embedding methods is under-researched. A transformer-based architecture

is developed using these insights, focusing on incorporating static attributes separately

from dynamic ones. Static and dynamic attributes can be distinguished with scarce de-

tailed knowledge of the event logs, and this distinction is commonly made in PPM [22].

First, some general design decisions are clarified, and then the implementation of fur-

ther model parts is detailed. Fig. 2 provides a general overview of the architecture.

Fig. 2. Overview of the architecture of the developed transformer

4.1 Embedding and Positional Encoding

The input to the neural networks varies for the different types of attributes in the da-

tasets and follows a general approach depending on the type, as described below.

Categorical Attributes. Nominal categorical attributes are encoded using learnable

embeddings, as is common with transformers. This balances expressiveness and dimen-

sionality and increases the model’s capacity. A single embedding length is used to fa-

cilitate handling vector and matrix dimensions throughout the model.

Numerical Attributes. Min-max scaling is applied to all numerical attributes; thus,

attributes are scaled linearly using the minimum and maximum derived from the train-

ing set. The same approach is used for ordinal categorical attributes, numbered accord-

ing to their natural order in advance. As numerical cannot be embedded without dis-

cretization, a linear projection is applied to the scaled attributes to maintain identical

dimensions for numerical and categorical attributes across the model.

Unlike RNNs, transformers do not impose positional information on their inputs, so

positional encodings are usually added [5]. This work uses rotary position encoding

(RPE), which combines relative and absolute position information and reportedly out-

performs other encodings [25].

4.2 Activity and Timestamp Encoder

Activity and timestamps are special event log attributes, as both are central elements of

an event log and are handled separately from other event log attributes. A transformer

Activity Input

Timestamp
Input

Dynamic
Attributes

Static
Attributes

Timestamp Encoder

Activity Encoder

Dynamic Attribute
Selection Networks

Static Attribute
Selection Network

FFN Remaining Time

RPE
Embedding /

Linear

6 M. C. Hennig

encoder is used to encode both sequences for each of these attributes separately. The

activity is embedded and positionally encoded beforehand, while the time features are

handled as numerical attributes and concatenated.

Central to the transformer is the attention mechanism which is applied to the input

sequences 𝑋 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉 with xi commonly being a vector representation of a se-

quence elements. In this case, X is an embedded sequence of activities. The input to the

attention consists of queries in a matrix Q, keys of dimension dk in a matrix K, and

values in a matrix V [5]. In case identical sequences are used as input to the attention,

such that Q = XWQ, K = XWK, and V = XWV with W denoting learned weight matrices,

this is known as self-attention. Instances with different query and key matrices are com-

monly called cross-attention [6]. Multiple attentions are usually applied to the inputs

separately and concatenated, leading to multi-head attention [5].

Fig. 3. Activity and timestamp encoder

The outputs of the multi-head attention are subsequently subjected to layer normaliza-

tion and a position-wise feed-forward network. In addition, residual connections are

added so that the encoded sequence X' as a result of self-attention on X with an activa-

tion function ϕ, which also describes a transformer encoder block, is given as:

𝐻 = LayerNorm(MultiHeadAttention(𝑄, 𝐾, 𝑉) + 𝑋)
𝑋′ = LayerNorm(FFN(𝐻) + 𝐻)
FFN(𝑎) = 𝜙(𝑊1𝑎 + 𝑏1)𝑊2 + 𝑏2

𝜙(𝑥) = Mish(𝑥) = tanh(softplus(𝑥)) 𝑥

The Mish [27] activation function, which has self-regularizing properties and is well-

suited for deep networks, is used throughout the model. Multiple encoders are stacked

four times, leading to a deeper model. The encoded activity and timestamp matrices are

denoted as A' and T', respectively. The matrices are then flattened using a variable se-

lection network [23], as shown in Fig. 3, similar to the dynamic attribute sequences.

4.3 Static Attribute Selection Network

A variable selection network (VSN) [23] is used to include the static attributes and

handle them separately from the dynamic ones. VSNs are based on GRNs and provide

a weighting of input attributes. Given several static attributes 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑚] with

si being a preprocessed vector of an encoded attribute, a VSN weighs inputs by applying

a GRN followed by a softmax function, resulting in a weight vector vi and again feeding

FFN
Layer
Norm

VSN CAGRN
Multi Head

Self-
Attention

A
Q, K, V

Layer
Norm

H

A'

Nx

 Towards Accurate Predictions in ITSM 7

each variable in its own GRN and summarizing the outputs. The final static context

vector CS is derived as follows:

𝐶𝑆 = VSN(𝑆) = ∑ 𝑣𝑖

𝑚

𝑖=1
𝑠̃𝑖

𝑣 = softmax(GRN(𝑆))

𝑠̃𝑖 = GRN𝑠𝑖
(𝑠𝑖)

The GLU and GRN are defined using the following equations and extensively use re-

sidual connections, with W indicating a trained weight matrix and a bias b. Please note

that weights and biases are not shared between individual GLUs and GRNs.

GRN(𝑎) = LayerNorm(𝑎 + GLU(𝑊1 𝜙(𝑊2 𝑎 + 𝑏2) + 𝑏1)
GLU(𝑎) = 𝜙(𝑊1 𝑎 + 𝑏1) ∘ (𝑊2 𝑎 + 𝑏2)

4.4 Dynamic Attribute Selection Network

Given a sequence of dynamic attribute values, 𝐷𝑘 = 〈𝑑1
𝑘 , 𝑑2

𝑘, … , 𝑑𝑛
𝑘〉 of the dynamic

attribute k that is concurrent to the sequence of activities, each attribute is encoded sep-

arately applying self-attention first. The encoded dynamic attributes are then subjected

to a cross-attention using the previously encoded activities. This setup is quite similar

to the original transformer decoder [5]. However, no causal masking is applied. Please

note that k is omitted in the following equation to improve clarity:

𝐻𝐷 = LayerNorm(MultiHeadAttention(𝑄𝐷 , 𝐾𝐷 , 𝑉𝐷) + 𝐷)
𝐻𝐷

′ = LayerNorm(MultiHeadAttention(𝑄𝐷′ , 𝐾𝐴′ , 𝑉𝐴′) + 𝐻𝐷)
𝐷′ = LayerNorm(FFN(𝐻𝐷

′) + 𝐻𝐷
′)

𝐶𝐷 = VSN(𝐷′)

𝑄𝐷 = 𝐷𝑊𝑄
𝐷 , 𝐾𝐷 = 𝐷𝑊𝐾

𝐷 , 𝑉𝐷 = 𝐷𝑊𝑉
𝐷 and 𝑄𝐷′ = 𝐷𝑘

′ 𝑊𝑄
𝐷′

, 𝐾𝐴′ = 𝐴′𝑊𝐾
𝐴′

, 𝑉𝐴′ = 𝐴′𝑊𝑉
𝐴′

This is done to extract importances from the attribute sequence itself and then exploit

the relationship between the activities and further attributes, similar to [6]. After that,

the encoded dynamic attribute sequence is flattened using a VSN to weigh the im-

portance of the individual time steps, resulting in the attribute’s dynamic context vector

CDk, as shown in Fig. 4. While many solutions in PPM use simpler desequentialization

mechanisms, such as global average pooling [10, 20] layers or simple flattening [6], we

suspect that targeted feature selection might improve the model’s prediction quality.

Fig. 4. Dynamic attribute selection network

Nx

Multi Head
Self-

Attention
Dk

Multi Head
Cross-

Attention

Q

A'

Q, K, V

K, V

Layer
Norm

Layer
Norm

HD

FFN

H'D

VSN
Layer
Norm

CDkGRN

8 M. C. Hennig

5 Experimental Evaluation

Five datasets from different industries in ITSM’s incident management are used to eval-

uate the developed architecture. These datasets show various event and case counts and

event log attributes, ensuring a broad coverage and validity of the findings. The models

are trained using early stopping up to a maximum of one hundred epochs on these logs.

• The “enriched event log of an incident management process” [28] derived from an

IT company’s ServiceNow platform and is referred to as “ServiceNow”.

• The “Dataset belonging to the help desk log of an Italian Company” [29] originating

in an Italian software company referred to as “Italian Company”.

• The “Helpdesk” event log [30] from a software company without extra attributes.

• The BPIC 2014 [31] event log, created by Rabobank’s IT organization.

• The BPIC 2013 [32] incident log from the car producer Volvo’s IT organization.

5.1 Event Log Filtering and Splitting

The data undergoes a unified preprocessing to prepare it for the training. This involves

removing duplicates and highly correlated attributes (≥ 0.9 or ≤ −0.9). All parts are

combined using the provided identifiers for event logs with multiple files. The event

logs are then split into 80/20 partitions using strict temporal splitting [8] to ensure un-

biased and reproducible splits. Chronological outliers at the start and end of the BPIC

2014, BPIC 2013, and ServiceNow datasets are also filtered, and the 5% of cases with

the most events are removed in all event logs as recommended [8].

Table 2. Event coverage of the event logs after filtering and strict temporal splitting [8]

 Train Test Total

Abs. Rel. Abs. Rel. Abs. Rel.

Helpdesk 11,029 81.45% 2,512 18.55% 13,541 98.77%

Italian Company 15,807 77.08% 4,700 22.92% 20,507 96.06%

ServiceNow 96,350 77.69% 27,670 22.31% 124,020 87.52%

BPIC 2013 8,653 31.15% 19,124 68.85% 27,777 42.39%

BPIC 2014 318,228 80.13% 78,901 19.67% 397,129 85.09%

The strict temporal splitting approach performs well, capturing over 85% of events

compared to unfiltered logs, as shown in Table 2. However, applying this method to

the BPIC 2013 event log results in many invalid events between the train and test sets,

rendering it unsuitable [8] for strict temporal splitting. Consequently, it was opted for

a temporal split without debiasing for this event log. This leads to an acceptable cover-

age of 89.55% of the unfiltered event log, with 17.81% of events in the test set.

5.2 Evaluation Results

Predicting the remaining time is a regression task requiring metrics to determine the

deviation between the label and the predicted values. Although the mean absolute error

 Towards Accurate Predictions in ITSM 9

(MAE) shows some sensitivity to outliers, it is less than other metrics and offers intui-

tive interpretability [33]. The mean squared error (MSE) complements this metric with

a stronger penalization for larger errors and potential outliers [33]. To assess whether

the models have learned adequately, a naïve model, which predicts only the train set’s

median for the remaining time, is added for reference. A baseline model is also imple-

mented using an LSTM approach as described in [9], with the identical handling of

numerical and categorical attributes as the transformer without positional encoding.

The evaluation results are shown in Table 3 and indicate that most models have

learned better predictions than the naïve models. An exception to this is the Italian com-

pany event log, where the LSTM performs worse. This may indicate potential instabil-

ity of the model that might be alleviated by using more attributes or different prepro-

cessing in this model, especially using embeddings might not be suitable. Additional

model fine-tuning might also be beneficial in the case of the LSTM.

Table 3. Results of the evaluation on the test set with the MAE and MSE in days

Event Log Naïve LSTM Transformer Mean

MAE MSE MAE MSE MAE MSE MAE MSE

Helpdesk 5.05 109.50 4.94 107.29 3.55 68.71 4.51 95.17

Italian Company 15.58 147.98 21.61 699.71 7.81 113.97 15.00 320.55

ServiceNow 3.26 31.68 2.29 20.49 1.95 22.66 2.50 24.94

BPIC 2013 4.26 28.88 2.95 14.21 2.46 11.35 3.22 18.15

BPIC 2014 1.93 14.37 1.79 11.51 1.71 13.22 1.81 13.03

The transformer model generally outperforms the LSTM and naïve models regarding

MAE and MSE across most datasets. This suggests that it is a more accurate prediction

model for the event logs used in this work, measured by MAE. Interestingly, despite

the transformer model’s significantly better MAE, the LSTM slightly outperforms the

transformer in terms of MSE in some instances, suggesting a better handling of outliers.

Regarding the training, it must be stated that the deep transformer model exhibited

significant overfitting in the first tries, while the LSTM was unproblematic in this re-

gard. This necessitated a low learning rate and the extensive use of dropout, L2 regu-

larization, and weight decay in the model. During training, linear warm-up epochs were

incorporated at the start, and a linear decay rate was added for the later epochs. This

was done to help the used adaptive AdamW optimizer learn accurate gradient statistics

first and later decrease the magnitude of weight updates as the training progresses. This

increased the epochs required to converge, again adding to the training time.

6 Discussion and Limitations

The empirical results in this work underscore the transformer’s performance and

feasibility in the novel architecture presented for the domain of ITSM. The developed

architecture shows promise in handling ITSM processes’ complexities and outperforms

naïve baselines and LSTMs on several event logs. Notably, the utility of several archi-

tectural features new to PPM is shown, such as advanced positional encoding

10 M. C. Hennig

techniques [25] and the distinguishing between static and dynamic attributes [22],

which enable the model to effectively capture the inherent contextual and temporal dy-

namics of ITSM processes. As a novel approach, this complements earlier work that

eschewed this distinction [6] or omitted additional attributes [10], offering insights into

the design of transformer architectures. Integrating GLUs and GRNs also contributes

to more refined handling of these attributes, replicating findings outside of PPM [23],

showing their transferability, and improving the model’s performance. Additionally,

several insights into training transformer models could be gained, specifically regarding

the mitigation of overfitting, which was found to be pivotal in such deep models.

Nonetheless, this study has some limitations. First, further ablation studies of the

model might be necessary to assess the independent impact of each component, such

as the VSNs and positional encoding. Also, as this work focused on a newly developed

architecture, a comprehensive tuning of the hyperparameters was omitted. The evalua-

tion results might be more favorable if separate tuning is applied for each event log.

This should also be combined with a further comparison of more event logs and addi-

tional benchmark models to assess the architecture on a broader scale.

7 Conclusion and Future Research

This study introduced a novel transformer-based architecture for predictive process

monitoring in IT Service Management (ITSM), addressing the challenges posed by the

complexity and heterogeneity of ITSM processes. The proposed model incorporates

advanced techniques such as rotary position encoding, GLUs, and separate handling of

static and dynamic attributes, which have not been widely explored in predictive pro-

cess monitoring. Generally, the transformer model demonstrates a robust capability to

generalize across different datasets, as evidenced by its performance metrics attained

in this work. The enhanced prediction capabilities of transformers in ITSM can drive

operational effectiveness by facilitating decision-making and proactive SLA manage-

ment. However, this work shows that deep transformers tended to overfit, necessitating

careful regularization techniques during training. Addressing these challenges of over-

fitting and optimizing the training process will be crucial for advancing the application

of these models in future works. Overall, the results validate the hypothesis that trans-

formers can meet the complex demands of ITSM predictive process monitoring with

appropriate modifications, potentially leading to more operational efficiency and ser-

vice-level adherence. To ensure that optimal models are selected, future work on this

architecture should include more extensive studies on separate model components of

the transformer to assess their impact on prediction performance. This should be sup-

plemented with an extended evaluation containing additional event logs and prediction

targets, such as the next activity and timestamp.

Many relevant data sources in ITSM, such as configuration management databases

and organizational and technical structures, form multi-layered network structures. In

this regard, the work with non-tabular network data and geometric deep learning re-

mains interesting for future analyses.

 Towards Accurate Predictions in ITSM 11

References

1. Bardhan, I.R., Demirkan, H., Kannan, P.K., Kauffman, R.J., Sougstad, R.: An Interdisci-

plinary Perspective on IT Services Management and Service Science. JMIS. 26, 13–64

(2010). https://doi.org/10.2753/mis0742-1222260402.

2. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep Learning for Predictive Business Process

Monitoring: Review and Benchmark. IEEE Trans. Serv. Comput. 16, 739–756 (2022).

https://doi.org/10.1109/tsc.2021.3139807.

3. Loewenstern, D., Shwartz, L.: IT Service Management of Using Heterogeneous, Dynami-

cally Alterable Configuration Item Lifecycles. In: Cordeiro, J. and Filipe, J. (eds.) 10th In-

ternational Conference on Enterprise Information Systems. pp. 155–160. Barcelona, (2008).

4. Mao, H., Zhang, T., Tang, Q.: Research Framework for Determining How Artificial Intel-

ligence Enables Information Technology Service Management for Business Model Resili-

ence. Sustainability. 13, 11496 (2021). https://doi.org/10.3390/su132011496.

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,

Polosukhin, I.: Attention is All You Need. In: Guyon, I., Luxburg, U. von, Bengio, S., Wal-

lach, H.M., Fergus, R., Vishwanathan, S.V.N., and Garnett, R. (eds.) Advances in Neural

Information Processing Systems. pp. 5998–6008. NeurIPS, Long Beach, CA, USA (2017).

6. Ni, W., Zhao, G., Liu, T., Zeng, Q., Xu, X.: Predictive Business Process Monitoring Ap-

proach Based on Hierarchical Transformer. Electronics. 12, 1273 (2023).

https://doi.org/10.3390/electronics12061273.

7. Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Cham, Swit-

zerland (2021). https://doi.org/10.1007/978-3-030-78132-3.

8. Weytjens, H., De Weerdt, J.: Creating Unbiased Public Benchmark Datasets with Data

Leakage Prevention for Predictive Process Monitoring. In: Marrella, A. and Weber, B. (eds.)

Business Process Management Workshops. pp. 18–29. Springer, Cham, Switzerland (2022).

https://doi.org/10.1007/978-3-030-94343-1_2.

9. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business Process Monitoring

with LSTM Neural Networks. In: Dubois, E. and Pohl, K. (eds.) Advanced Information Sys-

tems Engineering. pp. 477–492. Springer, Essen, Germany (2017).

https://doi.org/10.1007/978-3-319-59536-8_30.

10.Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: ProcessTransformer: Predictive Business Pro-

cess Monitoring with Transformer Network, http://arxiv.org/abs/2104.00721, (2021).

11.Philipp, P., Jacob, R., Robert, S., Beyerer, J.: Predictive Analysis of Business Processes

Using Neural Networks with Attention Mechanism. In: 2020 International Conference on

Artificial Intelligence in Information and Communication. pp. 225–230. IEEE, Fukuoka,

Japan (2020). https://doi.org/10.1109/icaiic48513.2020.9065057.

12.Chen, H., Fang, X., Fang, H.: Multi-task prediction method of business process based on

BERT and Transfer Learning. Knowl. Based Syst. 254, 109603 (2022).

https://doi.org/10.1016/j.knosys.2022.109603.

13.Moon, J., Park, G., Jeong, J.: POP-ON: Prediction of Process Using One-Way Language

Model Based on NLP Approach. Appl. Sci. 11, 864 (2021).

https://doi.org/10.3390/app11020864.

14.Wang, J., Yu, D., Liu, C., Sun, X.: Outcome-Oriented Predictive Process Monitoring with

Attention-based Bidirectional LSTM Neural Networks. In: 13th International Conference on

Web Services. pp. 360–367. IEEE, Milan, (2019). https://doi.org/10.1109/icws.2019.00065.

15.Jalayer, A., Kahani, M., Beheshti, A., Pourmasoumi, A., Motahari-Nezhad, H.R.: Atten-

tion Mechanism in Predictive Business Process Monitoring. In: 24th International Enterprise

12 M. C. Hennig

Distributed Object Computing Conference. pp. 181–186. IEEE, Eindhoven, Netherlands

(2020). https://doi.org/10.1109/edoc49727.2020.00030.

16.Jalayer, A., Kahani, M., Pourmasoumi, A., Beheshti, A.: HAM-Net: Predictive Business

Process Monitoring with a hierarchical attention mechanism. Knowl. Based Syst. 236,

107722 (2022). https://doi.org/10.1016/j.knosys.2021.107722.

17.Rivera-Lazo, G., Ñanculef, R.: Multi-attribute Transformers for Sequence Prediction in

Business Process Management. In: Pascal, P. and Ienco, D. (eds.) Discovery Science. pp.

184–194. Springer, Montpellier, (2022). https://doi.org/10.1007/978-3-031-18840-4_14.

18.Wickramanayake, B., He, Z., Ouyang, C., Moreira, C., Xu, Y., Sindhgatta, R.: Building

Interpretable Models for Business Process Prediction using Shared and Specialised Atten-

tion Mechanisms. Knowl. Based Syst. 248, 108773 (2022).

https://doi.org/10.1016/j.knosys.2022.108773.

19.Irwin, C., Dossena, M., Leonardi, G., Montani, S.: Structural Positional Encoding for

Knowledge Integration in Transformer-based Medical Process Monitoring. In: Calimeri, F.,

Dragoni, M., and Stella, F. (eds.) 2nd AIxIA Workshop on Artificial Intelligence for

Healthcare. pp. 18–30. CEUR, Rome, Italy (2023).

20.Wang, J., Huang, J., Ma, X., Li, Z., Wang, Y., Yu, D.: MTLFormer: Multi-Task Learning

Guided Transformer Network for Business Process Prediction. IEEE Access. 11, 76722–

76738 (2023). https://doi.org/10.1109/access.2023.3298305.

21.Amiri Elyasi, K., van der Aa, H., Stuckenschmidt, H.: PGTNet: A Process Graph Trans-

former Network for Remaining Time Prediction of Business Process Instances. In:

Guizzardi, G., Santoro, F., Mouratidis, H., and Soffer, P. (eds.) Advanced Information Sys-

tems Engineering. pp. 124–140. Springer, Cham, Switzerland (2024).

https://doi.org/10.1007/978-3-031-61057-8_8.

22.Brunk, J.: Structuring Business Process Context Information for Process Monitoring and

Prediction. In: 22nd Conference on Business Informatics. pp. 39–48. IEEE, Antwerp, Bel-

gium (2020). https://doi.org/10.1109/cbi49978.2020.00012.

23.Lim, B., Arik, S.O., Loeff, N., Pfister, T.: Temporal Fusion Transformers for Interpretable

Multi-horizon Time Series Forecasting, http://arxiv.org/abs/1912.09363, (2020).

24.Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., Sun, L.: Transformers in Time

Series: A Survey. In: Elkind, E. (ed.) 32nd International Joint Conference on Artificial In-

telligence. pp. 6778–6786. Macao, PRC (2023). https://doi.org/10.24963/ijcai.2023/759.

25.Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., Liu, Y.: RoFormer: Enhanced transformer with

Rotary Position Embedding. Neurocomputing. 568, 127063 (2024).

https://doi.org/10.1016/j.neucom.2023.127063.

26.Shazeer, N.: GLU Variants Improve Transformer, http://arxiv.org/abs/2002.05202, (2020).

27.Misra, D.: Mish: A Self Regularized Non-Monotonic Activation Function. In: 31st British

Machine Vision Virtual Conference. Virtual (2020).

28.Amaral, C., Fantinato, M., Peres, S.: Incident management process enriched event log,

https://archive.ics.uci.edu/dataset/498, (2018). https://doi.org/10.24432/c57s4h.

29.Polato, M.: Dataset belonging to the help desk log of an Italian Company, (2017).

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.

30.Verenich, I.: Helpdesk, (2016). https://doi.org/10.17632/39bp3vv62t.1.

31.van Dongen, B.F.: BPI Challenge 2014, (2014). https://doi.org/10.4121/uuid:c3e5d162-

0cfd-4bb0-bd82-af5268819c35.

32.Steeman, W.: BPI Challenge 2013, (2013). https://doi.org/10.4121/uuid:a7ce5c55-03a7-

4583-b855-98b86e1a2b07.

33.Jadon, A., Patil, A., Jadon, S.: A Comprehensive Survey of Regression Based Loss Func-

tions for Time Series Forecasting, http://arxiv.org/abs/2211.02989, (2022).

	1 Introduction
	2 Research Method
	3 Research Background
	3.1 Transformer in Predictive Process Monitoring
	3.2 Architectural Features in Transformer Models

	4 Model Development
	4.1 Embedding and Positional Encoding
	4.2 Activity and Timestamp Encoder
	4.3 Static Attribute Selection Network
	4.4 Dynamic Attribute Selection Network

	5 Experimental Evaluation
	5.1 Event Log Filtering and Splitting
	5.2 Evaluation Results

	6 Discussion and Limitations
	7 Conclusion and Future Research
	References

