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Abstract. While event log data quality is recognized as a crucial con-
cern in process mining, the impact of event log errors on different types of
process mining tasks has remained largely unexplored. This paper aims
to fill such a gap by analyzing how various errors affect analysis results.
In particular, we aim to assess whether and to what extent different types
of errors that impact the quality of activity labels affect the performance
of predictive process monitoring models, considering the three main tasks
of next activity, outcome, and remaining time prediction, using publicly
available and simulated event logs. The results of the experiments are
used to extract preliminary insights into the design of data preparation
pipelines for predictive process monitoring.

Keywords: data quality · data science pipeline · classification.

1 Introduction

Process mining aims to extract insights on business processes using the data in
so-called event logs [19]. Event logs collect digital traces of events, capturing the
occurrence of process steps. Events may be logged by human actors or informa-
tion systems used in the execution of the process. For each event, an event log
must contain at least an ID of the process execution to which the event belongs,
a.k.a. case ID, a label indicating the activity that the event has recorded, and a
timestamp. As a (process) data science and analytics discipline, process mining
is subject to the tenet of garbage in, garbage out : the lower the quality of the
input event logs, the lower the quality and reliability of the insights that we can
extract using process mining [17].
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Understanding the effect of errors on the quality of the data analysis results is
crucial for designing and improving data science pipelines [3,8]. On the one hand,
it can inform the design and configuration of the data-gathering landscape. For
instance, information systems and sensors could be configured to avoid practices
more likely to lead to high-impact errors during data gathering. On the other
hand, it helps designers to prioritize cleaning actions in the input data prepara-
tion phase. Data cleaning has a cost, at least in terms of computational time and
effort. As such, a trade-off between input data cleaning actions and the expected
impact on the data analytics output quality must be found when designing a
data science pipeline.

While several research contributions focus on characterizing event log data
quality [17,3], the issue of how low-quality logs impact the quality of process
mining results has remained largely unexplored. This paper aims to start a re-
search journey to close this gap. Specifically, as far as errors are concerned, we
restrict our attention to the ones affecting the activity labels. This is a funda-
mental attribute of an event log that is crucial for all process mining tasks. As
a process mining task, we focus on Predictive Process Monitoring (PPM) [4], a
task falling within our realm of expertise that has seen exponentially growing
interest from the process mining research community during the past ten years.
Thus, our research question is: “How do errors on event log activity labels affect
the performance of PPM models?”.

To answer the research question, we present and discuss in this paper the
results of a comprehensive experiment. To model the errors, we consider the
event log imperfection patterns in [17] that target activity labels, i.e., distorted,
polluted, homonym, and synonym labels. We consider the established tasks of the
next event, outcome, and remaining time prediction as PPM tasks, using state-of-
the-art long short-term memory (LSTM) recurring neural networks. As expected,
erroneous labels impact the performance of the PPM model. However, the type
of errors and some data characteristics may also have an important influence,
thus possibly driving the choice of which cleaning operations to prioritize.

The paper is structured as follows. The next section discusses the related
work. Section 3 illustrates a general data pipeline design framework. The detailed
design of the experiment and the results obtained are presented in Section 4 and
5, respectively. Conclusions are drawn in Section 6.

2 Related Work

The design of an effective data preparation pipeline for data-centric AI systems
mainly consists of techniques for detecting and repairing errors in the input data.
Several approaches proposed in the literature aim to support the early stages of
the data analysis pipeline, such as data exploration, profiling, and data quality
(DQ) assessment [5]. Other approaches also consider the DQ improvement of
input data, e.g., exploiting reinforcement learning [1] or leveraging the knowledge
of data preparation pipelines performed in the past [11].
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Fig. 1: High-level framework.

Along the direction of the approach presented in this paper, other approaches
focus on assessing the effect of DQ errors and DQ improvement techniques, e.g.,
data cleaning, on the performance of ML applications [6,15]. All these papers
conclude that the impact of errors depends on the characteristics of the dataset
and the ML model used.

The process mining manifesto [19] assumes that high-quality event logs are
the ones that record all the relevant events and in which all the events are
well-defined. Bose et al. [2] have further defined the source of low data quality
of event logs as missing, incorrect, imprecise, and irrelevant data, which can
affect different types of information recorded in an event log. Suriadi et al. [17]
have instead developed a bottom-up, pattern-based approach to characterizing
the sources of poor event log data quality, proposing 11 imperfection patterns
based on the insights of industrial case studies. The methods to identify data
quality issues in event logs and address them focus on specific patterns, such
as synonymous or polluted labels [14], or more artificial problems on timestamp
accuracy and event ordering [16]. While the event log preparation phase is usually
included in process mining methodologies and deemed crucial to obtain high-
quality results [20], systematic approaches to this phase are missing and, in our
humble view, under-investigated in the literature.

3 High-Level Framework

A typical data preparation pipeline for data analytics is shown in Fig. 1a. After
having acquired the data and before the data analysis task is performed, the
DQ of the data is assessed and possibly improved in the data preparation phase.
Both central phases rely on a Knowledge Base recording knowledge about the
type of errors that are found, or could potentially be found, in the data and
possible ways to fix them.

The experiment that we present in this paper (see Fig. 1b) focuses on extract-
ing insights for such a knowledge base, considering PPM as the Data Analysis
Task. As a first step, we acquired five different data sources (event logs) and
performed some general data profiling. Then, for each of the sources, we system-
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Log Events Act. Labels Traces Avg. case durat.

BPIC11 29004 186 1026 8.64 m
BPIC15 33574 281 696 3.16 m
Credit 63980 12 5000 2.05 h
Pub 66524 12 5000 1.47 w
Justice 669693 1141 24465 18.9 m

Table 1: Event logs used in the experiment.

atically introduced imperfections in the activity labels, creating new datasets
to be analyzed. For each of these datasets, we created predictors for the three
PPM tasks and tested them using a test set based on clean data (traces from
the original dataset). The goal of this phase is to gather evidence on how much
building a model with data containing imperfections impacts future predictions
on cleaned data. In other words, we follow the principle that it is important
to obtain predictive models that are accurate on the correct reality of process
execution, as captured by the clean traces. The results obtained are analyzed to
obtain preliminary insights regarding the design of data preparation pipelines
for the PPM task in process mining.

4 Experiment Design

4.1 Event Log Acquisition and Error Injection

Table 1 lists the event logs considered in the experiments. The BPIC11 and
BPIC15 are sets of event logs made available by the Business Process Intelligence
Challenge (BPIC) in 2011 and 2015, respectively (the reduced logs from [18] have
been considered in the analyses). For each set of logs, we use the one labeled as
number one. These logs have been chosen because they are widely used in the
literature and have outcome labels. We also consider two synthetic logs (Pub
and Credit) used in previous research [10] and for which we can control the error
injection of homonymous and synonymous labels. Note that no outcome labels
are defined for these synthetic logs. Finally, we acquired an event log about
judicial cases execution in an Italian court (dataset “Justice” in Table 1), which
has both cleaned labels (standardized event codes) and polluted labels (event
codes polluted by case-level attributes and resource information) [13]. This log
allows comparing the impact on the PPM performance of training with cleaned
and polluted labels (without the need to inject artificial errors).

We model the errors that can affect the activity labels based on the event log
imperfection patterns defined by Suriadi et al. [17]. Note that the error injection
process is supported by the scripts implementing the FLAWD language publicly
available.4 Among the 11 imperfection patterns, we consider the four ones that
directly affect categorical labels in an event log:

Distorted labels (DIST). This pattern refers to the existence of two or more
values of an activity label that, while not an exact match, have strong similarities
4 https://github.com/jonghyeonk/FLAWD

https://github.com/jonghyeonk/FLAWD
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syntactically and semantically. In the experiments, we distort activity labels by
randomly introducing one of five possible types of typos.5

Polluted labels. This pattern refers to a situation where the values assumed by
an attribute are structurally the same, yet they are distinct due to differences in
the values that further qualify the meaning of the value. We distinguish two types
of polluted labels: a) non-random (POL-NORND), when pollution is performed
systematically by attaching to the activity label the resource label of the same
event and b) random (POL-RND) when, additionally, a randomly generated
string is attached to the combination of the activity and the resource label.

Homonymous labels (HOM). This pattern describes a situation where an
activity is repeated multiple times in a log to refer to two or more distinct
process steps. Given the domain-specific nature of this error, we consider it only
for the synthetic datasets. In both the Pub and Credit datasets, we created four
homonym labels, each of which can be used to substitute two or three activity
labels in the original dataset.

Synonymous labels (SYN). This pattern refers to a situation where a group of
activity labels are syntactically different but semantically equivalent. Like HOM,
we consider this error type only for the synthetic datasets. For each activity label,
we created from one up to three synonym labels.

Log Error Type 0.1 0.2 0.3 0.4 0.5

BPIC11
DIST 1894 3214 4387 5416 6372
POL-RND 2571 4958 7344 9730 12115
POL-NORND 392 443 469 484 495

BPIC15
DIST 2344 4080 5624 7027 8318
POL-RND 2948 5626 8304 10981 13659
POL-NORND 906 1114 1251 1352 1441

Credit

DIST 1854 2874 3696 4369 4962
POL-RND 5144 10277 15410 20543 25676
POL-NORND 59 59 59 59 59
HOM 16 16 16 16 16
SYN 33 33 33 33 33

Pub

DIST 1844 2814 3594 4231 4781
POL-RND 5326 10640 15954 21268 26582
POL-NORND 52 52 52 52 52
HOM 15 15 15 15 15
SYN 33 33 33 33 33

Table 2: Number of distinct activity labels for each dataset per error type (avg. of 8
training datasets, rounded to the unit) for X ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Each pattern is injected randomly in an event log until a given ratio X of
events (rows) in it have been affected by an error, with X ∈ {0.1, 0.2, 0.3, 0.4,
0.5} (that is, we consider an error rate of the events in a log varying from 10% to
50%). For instance, for the HOM and SYN error types, X = 0.1 means that in
10% of the events of a log, one activity label is substituted by its homonym and

5 deleting a character, inserting a random character, swapping two characters ran-
domly chosen, substituting a character with one randomly chosen from the ones
close to it on a keyboard, changing a lowercase character to uppercase or vice versa.



6 M. Comuzzi et al.

one of its synonyms, respectively. To be able to assess the impact of individual
patterns, logs are injected with one individual pattern at a time.

As a result of the error injection process, new activity labels appear in an
event log. Table 2 shows the total number of activity labels (that is, the original
ones, plus the ones generated by the error injection process) in the logs for differ-
ent values of the error ratio X. Note that, because the injection process involves
randomness, we generated 8 different datasets per error type-ratio combination.
The results shown in Section 5 refer to averages obtained across these 8 ran-
domly generated datasets for a given error type and error ratio. It must also be
noted that the number of new labels introduced by the error injection process
strongly depends on the type of injected error and it does not follow directly the
error ratio X. For errors characterized by randomness (DIST, POL-NORND),
the number of activity labels increases with the error rate, whereas the other
types of errors introduce only a fixed number of new activity labels. The DIST
error type introduces fewer new activity labels than POL-RND because (i) the
classifiers are not case sensitive, so changing the case of characters in a label (i.e.
one of the possible typos) does not introduce new labels, and (ii) some of the
other simulated typos may yield the same erroneous activity label, e.g., when by
chance the same character is deleted in more than one occurrence of the same
activity label.

In the experiments, we considered both a random and a temporal train/test
set split. In the random split, we randomly split the traces in the original dataset
into train/test sets with 80%/20% ratio. In temporal split, the earliest 80% of
the traces in a log constitute the train set and the remaining 20% the test set.
We anticipate here that, unless specified, the results obtained with these two
types of splits do not differ significantly.

The experiment for the dataset for the Justice datasets incorporates some
specific adjustments tailored to the unique characteristics of the dataset. First,
the stakeholders who provided the dataset wanted us to focus on the case remain-
ing time prediction PPM task. The log contains 24,465 finished cases starting
from January 2017 to March 2023. Several incomplete cases start earlier than
2017, but they are kept in the training and test sets to maintain authenticity.
The dataset is split based on the cut-off date of January 1, 2020. The test dataset
includes only cases active after this date, while the remaining cases are used for
the training set. This results in an approximate split of 80% for training and 20%
for testing. As far as the error rate is concerned, the number of unique activity
labels for which there is also a polluted value is 68 out of 1,141 activity labels.

4.2 Predictive Models

To keep the focus on the event log errors impact, we consider relatively simple
LSTM learning models, which have proved effective in PPM tasks [12], with
reasonable hyperparameter values. For all PPM tasks, we used a LSTM model
with two layers of 128 nodes, trained using the ADAM optimizer with learning
rate 0.001 and 300 epochs with 20% of the training set used for validation, and
early stopping when, after 100 epochs, the loss function does not decrease for 10
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straight epochs. Note that the activity label vocabulary is built using both the
training and the validation set. For the classification problems, we consider a
batch size of 16 and use the cross-entropy loss for the next activity task and the
binary cross-entropy loss combined with sigmoid layer for the outcome prediction
task. The F1-score is considered as evaluation metric (note that AUC could not
be used in this case because of unseen labels in the test sets). For the remaining
time prediction, we consider a batch size of 32, the mean square error (MSE)
loss function with early stopping, and the mean absolute error (MAE) serves
as the evaluation metric. The predictive models and the error-injected datasets
(excluding the private Justice dataset) used in the experiments are publicly
available.6

As far as feature engineering and encoding are concerned, we generated fea-
tures using the (categorical) activity and resource attributes, and two features
derived from the event timestamp: time since the start of the case (TSSC) and
time since the previous event (TSP). The activity labels are encoded into a 32-
dimensional feature vector using an embedding layer with the stochastic gradient
descent. The resource attribute is one-hot encoded and time features are stan-
dardized to handle categorical data effectively. For sequence encoding, we used
prefixes padded as necessary to handle varying sequence lengths [12].

5 Results and Discussion

5.1 Experimental Results

For brevity, we only present a set of representative results for each PPM task.
The next activity prediction PPM task is the one that is affected the most by
the errors, which could have been expected since the errors modify the errors of
the classification task.

Fig. 2a and 2b show the value of the F1-score of the next activity prediction
task in the real-world datasets BPIC11 and BPIC15, respectively. The perfor-
mance of the next activity appears to degrade linearly with the ratio of errors
injected. At an error ratio of 30%, the performance is at least 30% of the one
achieved using the clean training set. The performance degradation also depends
on the type of errors that are introduced. The performance degradation associ-
ated with the POL-NORND errors is less than the one introduced by the DIST
errors, which is less than the one introduced by the POL-RND. This can be
explained by considering the number of new activity labels introduced by each
type of error (see Table 2): the higher the number of new activity labels intro-
duced by errors, the higher the performance degradation. This result is aligned
with the literature on open set recognition in multi-class classification [7], which
has recognized that random noise on labels can dramatically decrease the clas-
sifier performance. Note that the results shown in Fig. 2 consider a random
training/test split. When using the temporal split for next activity prediction,
the performance obtained on the full dataset is about one order of magnitude
6 https://github.com/brucks1217/Imperfection-pattern

https://github.com/brucks1217/Imperfection-pattern
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Fig. 2: Next activity and outcome prediction performance (F1-score) for different error
ratios X.

lower. This is due to the fact that, towards the end of the timeline, both datasets
contain several cases that remain incomplete. Using the temporal split, we ob-
tained a performance similar to the random split when deleting 30% of the cases
starting last in the original logs.

The results on the synthetic datasets Pub and Credit, shown respectively
in Fig. 2c and 2d, confirm the results obtained on the real-world datasets for
the POL-NORND, DIST and POL-RND types of errors, and they allow us to
discuss the effect on the performance of the HOM and SYN errors. The perfor-
mance degradation associated with the HOM errors is limited. The SYN errors
are associated with higher performance degradation, albeit lower than the label
polluting/distorting errors discussed earlier. Again, this result can be explained
by referring to the number of activity labels introduced (see Table 2). The HOM
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type of error type introduces only a few new activity labels, while the SYN
error type introduces about half the number of new labels introduced by the
POL-NORND type of error.

The classification performance (F1-score) of outcome predictors is shown in
Fig. 2e and 2f. We draw two insights from the results shown in the figure: (i)
while errors induce a performance degradation, this remains limited compared to
the next activity prediction task, and (ii) while it appears like the non-random
errors (POL-NORND) are associated with lower performance degradation, the
performance degradation patterns associated with different error types are not
clearly discernible as in the next activity prediction task. Both insights can
be explained by the nature of the outcome prediction PPM task, whereby the
importance of the activity labels in the classifier learning process may be limited
due to several factors, such as the outcome labels depending on factors not
captured in the event log or other features derived from case-level attributes
being highly correlated with the outcome label values. Similar considerations on
the limited importance of features derived from event-level attributes in outcome
prediction have been drawn by [9] studying the impact of features derived from
event resource labels.

Fig. 3 shows, as a representative example, the results obtained for the BPIC11
dataset for remaining time predictions. In Fig. 3a, we see the case durations in
this log have a significant variability, as captured by a median of 1.84 months
with some cases spanning even the whole event log timeframe (3.13 yrs). We
can notice that differences in the MAE with different types of imperfections
remain limited (within 10% of the MAE for the clean training set). A possible
explanation is that the activity labels for remaining time predictions are less
important than the event time series in the prediction model. In general, as
shown in Fig. 3b, there is a relatively low variability in the errors. When labels
are distorted (DIST), the remaining time predictions are slightly worse than the
baseline (around 5% in the worst case). For the POL-NORND error type, the
impact of the errors is negligible, which may also be justified by the low number
of new labels introduced (cfr. Tab. 1). For the POL-RND error type, the MAE
even slightly improves compared to the baselines. This could be due to the fact
that a high number of randomly inserted values changes the world of which the
predictor tries to learn a model.

The results for the Justice dataset — not shown in Fig. 2 — highlight a clear
impact of the errors, with a MAE7 of 212 days obtained with a clean training set,
i.e., using the standardized event codes, and 269 days with the polluted labels.
This performance difference between the predictions is remarkable, particularly
considering that the unique labels appearing both in the clean and the polluted
datasets are only 68 out of 1,141. It could be explained by considering that, in a
long-lived process like trial scheduling and execution, the order of activity labels
may still play a key role (as compared to the timestamps series) in the remaining

7 Note that trials can span several years, so an MAE of a few months may still be
acceptable in many decision-making scenarios.
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(a). BPIC11 case duration distribution (b). MAE for different values of error ratio X

Fig. 3: BPIC11 log trace durations and test MAE.

time predictor learning process. Further testing would be needed to understand
the learning dynamics with this dataset.

5.2 Discussion

The development of the experiments presented in this paper was driven primar-
ily by the aim of understanding how to design data preparation pipelines for
the PPM process mining task. Although the experiment design is subject to
limitations (discussed in the next section), based on the results presented in this
paper, we argue that the following insights should be considered when designing
a data preparation pipeline for activity labels of input datasets for PPM tasks:
(i) Activity label cleaning must be prioritized for next activity prediction, since
the impact on the model performance of low-quality activity labels in this task
is massive even at low error rates.
(ii) Activity label cleaning is less important for the outcome and remaining
time PPM prediction tasks, where the model performance may depend strongly
on other contextual factors, such as the nature of outcome labels in the case
of outcome prediction or the distribution of timestamps in the remaining time
prediction.
(iii) Among the considered imperfection patterns, the POL-RND and DIST bear
the highest impact on the performance of PPM models, because they introduce
a higher number of activity labels that do not appear in the clean event log.
Homonym and synonym labels appear to be a less critical quality issue, even in
the next activity prediction task.
(iv) Fixing the errors that introduce a higher number of new distinct activity
labels in a log should be prioritized over other types of errors that introduce
a lower number of new activity labels. Hence, perhaps counter-intuitively, fix-
ing the sources of random errors (e.g., using automated scripts to fix random
typos) should be prioritized over fixing the sources of systematic, non-random
errors (e.g., setting up a panel of domain experts to understand how homony-
mous/synonymous labels could be substituted by their correct values).
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5.3 Limitations

The experiments presented in this paper suffer from several limitations. First,
while the event logs considered are diverse in terms of the number of variants
and activities, we considered a limited set of logs, which could hamper the exter-
nal validity of the results. While the LSTM model is widely adopted for PPM,
we consider only one type of encoding and fixed hyperparameter settings. Note,
however, that the objective of the experiments is to compare the impact on the
performance of different types of errors, not to optimize the predictive perfor-
mance of the PPM models. Moreover, injecting errors increases the variability of
activity label values, which in turn increases the chance of having activity labels
in the (clean) test sets unseen in the training sets. To handle this issue, a com-
mon solution that we also applied in this work is to map all the unseen labels to
a default value. Other choices would have been possible. For example, in the case
of polluted labels, a more refined encoding could try to extract the activity label
information from the polluted label. However, we think that such approaches
would already require the definition of event log quality improvement methods,
which is not the focus of this paper. Finally, as discussed in [21], the train-test
split of traces may introduce different types of bias when executed either ran-
domly or accounting for temporal relations. As discussed earlier, we found such
a bias in the next activity prediction results for the real-world datasets when
using the temporal split.

6 Concluding Remarks

The impact of imperfections in training datasets in PPM has been evaluated in
this paper through a set of experiments injecting systematically four types of
errors in the logs: distortions, pollutions, synonyms, and homonyms of activity
labels. The experiments have been performed on five datasets presenting dif-
ferent characteristics, considering the three main tasks of PPM: next activity,
outcome, and remaining time prediction. The results of the experiments show
that impacts are diverse and depend on the type of imperfection and the intended
prediction. As discussed in the last section, these results open the way to further
investigations in the direction of building effective and efficient data preparation
pipelines for preparing datasets for high-performing predictive process models.
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