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Abstract. Recently, inspired by predictive process monitoring, the modeling
and prediction of the entire process information system has been proposed
as process model forecasting. By forecasting individual elements of a directly-
follows graph, the future state of the system can be predicted. However, the
current state-of-the-art principally employs univariate forecasting of direct-
follows relationships (DFs). This univariate approach overlooks the process
structure and possible relations between different elements within the process.
This paper introduces a comprehensive deployment of multivariate time series
models, more specifically a range of different machine- and deep learning
approaches, to forecast DFs. These are benchmarked on different event logs
collected from real-life event processes. Our extensive experiments reveal
that the performance of these forecasting models varies significantly across
different processes, highlighting the importance of model selection.

Keywords: Process Model Forecasting · Time Series Forecasting · Deep
Learning.

1 Introduction

In recent years numerous research advancements in the field of predictive process mon-
itoring (PPM) have been proposed, driven by the rapid development and widespread
application of machine learning and deep learning. PPM aims to forecast future
elements of ongoing cases in the information system, including the most probable
next activities [8], outcomes [26], and remaining runtimes [25]. Notably, the integra-
tion of recurrent neural networks (RNNs) into this domain has improved predictive
performance significantly.

Recently, a new paradigm known as Process Model Forecasting (PMF) has
emerged, focusing on predicting future states of the overall process model over a
long-term horizon [6]. The forecasted process model represents the will-be process,
enabling the exploration of tactical and strategic questions such as “Are my bottle-
necks persistent over time?" and “Will the ratio of granted loan applications change
in the next quarter?". The evolution of process behavior can be captured through the
shift in the direct-follows occurrences (DFs) over time. By deconstructing the time
dimensions, DFs are predicted by univariate time series techniques and transformed
to the directly-follows graphs (DFGs) as the forecasted process model. However,
the dependencies and interactions between DFs might influence each other or be
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influenced by the temporal evolution of the system in general (e.g. drifts), which
is not considered by univariate time series forecasting techniques that handle each
DF separately. For example, if a DF pair of activity A to B is followed by another
DF pair of activity B to C, the growth of the former DF tends to also result in an
increase in the occurrence of the latter one. The underlying pattern of DFs could be
captured by leveraging the multivariate time series forecasting models.

Inspired by the extensive research of deep learning applications in PPM, we explore
the use of current state-of-the-art time series forecasting models based on machine
learning (ML) and deep learning (DL) to do multivariate PMF. More specifically, we
incorporate the classes of Gradient Boosting Decision Tree (GBDT), Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs), Multilayer Perceptrons
(MLPs), and Transformers to capture the dependencies between DFs and tackle the
high dimensionality stemming from a high number of DFs interacting over time when
making predictions. In a benchmark, we aim to quantify the benefits of using multivari-
ate PMF, and specifically the use of state-of-the-art ML and DL time series techniques.

The rest of this paper is structured as follows. Section 2 discusses related work and
introduces several state-of-the-art time series forecasting approaches. Section 3 gives
a high-level overview of how PMF works. Section 4 introduces the data used in our
benchmark and shows the model selection. The section also explains the benchmark
setup and accompanying results. Next, Section 5 discusses the implications of these
results and some of the limitations. Finally, Section 6 summarizes the main findings
and provides some suggestions for future work.

2 Background and related work

2.1 Background of PMF

There has been a significant surge of interest in the exploration and application of pre-
dictive modeling techniques in process analytics. PMF moves from a case-level perspec-
tive towards process system-wide predictions. In an event log, directly-follows relations
between activities can be calculated as counting functions for activity pairs over traces.
Thus, a directly-follows graph can be obtained with the activities as nodes and DF rela-
tions as weighted edges. In this sense, the dynamics of a process model are expressed as
the evolution of a DF Graph (DFG). By utilizing aggregations, the event log is split into
multiple intervals, and the DFGs are constructed from every subset of the log. In PMF,
the directly-follows time series over the time intervals are modeled and forecasted to
build up a sequence of predicted DFGs, reflecting the long-term system-wide changes.
To predict the DFs, [6] leverage Holt Winter’s (HW) model, autoregressive model (AR),
ARIMA model, GARCH model, and VAR models. Note that the first four models are
classical univariate time series models, and VAR is a simple multivariate time series
model that does not operate well on high-dimensional time series. The key distinction
lies in whether considering the time series as separate single time-dependent variables
(univariate) or multiple interrelated time-dependent variables together (multivariate).
Thus, the univariate time series forecasting models overlook correlations between dif-
ferent DFs induced by the process structure. As the time series in actual applications
become increasingly higher dimensional and complex, the importance of multivariate
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time series techniques becomes more important to capture the relationships and
interactions between the different time series. In addition to VAR, as an extension of
the AR model, multivariate time series models based on deep learning such as RNNs
attract more attention recently, and are widely used in PPM [23]. Recently, other time
series-based approaches to analyze these system-wide aspects of a process system have
surfaced, such as [21] proposing a shift towards proactive and future-oriented business
process management (BPM). [22] provide a generic approach to create time series
abstractions of event logs. [24] present time-based conformance checking. [19] use a
transition matrix with probabilities, possibly over time, to detect concept drift. The
most similar work is [18], who demonstrate the effectiveness of temporal convolution
networks on the prediction of work-in-progress (WiP) distributions in business pro-
cesses. However, the predicted WiP is calculated as the total of all activities rather than
on individual changes, resulting in insufficient granularity in describing and forecasting
the process as PMF focuses on the joint prediction of the individual time series.

In the various DF time series selected from the event logs used in the evaluation
section visualized in Figure 1, it can be seen that DF time series are typically not
well-behaved and exhibit a variety of particular time series behavior. Sample 1a shows
a common white noise serie with a trend and cycle, however, Sample 1b contains
intermittency common to process systems such as weekends, resting periods, or
activities not used throughout a process in combination with another (e.g. batching
is happening, or resources are on holidays). Sample 1c shows similar low and high
spikes which are typically hard to model with parametric (univariate) time series like
ARIMA. Finally, Sample 1d shows the warm-up period of the system, which requires
appropriate trimming of the time series. Given that these patterns can become complex
and are often intertwined, e.g., Samples 1c through 1d are from the same system and
can have been produced under similar resource schedules, it is necessary to use models
that can cope with these irregularities which are not common to, e.g., econometric
time series for which many typical time series techniques are tailored to. Below, we
cover the most recent machine learning and deep learning approaches to tackle these.

2.2 ML and DL time series Forecasting

Forecasting plays a crucial role in anticipating future trends by extrapolating time
series data. The communities of data science and operations research have extensively
researched time series forecasting by incorporating machine learning and deep learning
techniques. In comparison to traditional forecasting methods, modern approaches
often involve handling large sets of interconnected time series data, all of which
require simultaneous forecasting. Gradient Boosting Decision Tree (GBDT) [9] is a
widely-used machine learning algorithm due to its accuracy and interpretability, and
Extreme Gradient Boosting (XGBoost) [4] and Light Gradient Boosting Machine
(LightGBM) [12] were developed to be highly efficient and scalable. XGBoost grows
trees level-wise and introduces regularization to prevent overfitting, while LightGBM
grows trees leaf-wise, allowing deeper trees and better performance in some cases.

In deep learning, Recurrent Neural Networks (RNNs) are specifically designed
to capture and learn patterns in sequential data such as time series. Connecting the
hidden layers recurrently back to themselves enables the neural network to build
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(a) Sample from the Hospital Billing log [17]
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(b) Sample from the RTFMP log [14]
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(c) Sample from the BPI 2019 [7]

Mar
2018

Apr May Jun Jul Aug Sep Oct Nov Dec
0

100

200

300

400

500

600

700

800

Va
lu

e

Create Purchase Requisition Item-Create Purchase Order Item

(d) Sample from BPI 2019 [7]

Fig. 1: Sample of DF time series

memory. Furthermore, Long Short-Term Memory networks (LSTMs) [10] and a
simplified version called Gated Recurrent Units (GRUs) [5] improve the gradient
vanishment problem when revealing long-term dependencies. In process mining,
LSTMs are widely applied in Predictive Process Monitoring (PPM) [25]. Besides
RNNs, Multilayer Perceptrons (MLPs) as a simpler architecture are adopted for time
series forecasting to achieve faster training and better generalization. N-BEATS [20]
is designed specifically for forecasting tasks, relying on a structure of stacked MLPs.
Each MLP block has a backward residual connection to improve the learning of the
trend and seasonality components. Furthermore, N-HITS [3] introduces a hierarchical
interpolation mechanism for multi-scale modeling of time series data, capturing
different scales of information and features along the time axis. Unlike the general-
purpose time series forecasting of N-BEATS, N-HITS provides better performance
when time series data involves multiple temporal resolutions or significant short-term
and long-term variations. Convolutional Neural Networks (CNNs) are tailored to
handling input data such as images and time series A variation is dilated casual
convolutions which are stacked on top of each other for efficient modeling of long-range
dependencies in sequences. [2] propose a simple dilated casual convolution model,
Temporal Convolutional Networks (TCNs), and provide empirical evidence showing
its outperforming traditional recurrent models in many sequence modeling tasks.

Another recent architecture for time series forecasting is based on the atten-
tion mechanism [1] by focusing on specific parts of the input data and dynamically
weighting different elements. The Transformers [27] are built entirely on the attention
mechanism allowing parallelized training and a large number of parameters. Temporal
Fusion Transformers (TFTs) [16] combine RNNs and attention mechanisms to capture
both temporal dynamics and feature importance. In addition, the gating components
in TFTs allow the model to skip irrelevant parts of the context, increasing flexibility
and reducing the risk of overfitting. For long-term time series forecasting, DLinear
and NLinear [29] were recently proposed as lightweight MLP model alternatives to
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Transformers. DLinear decomposes a time series into trend and seasonal components
and modeling these components separately using linear models, while NLinear directly
applies a linear model to the raw time series data without separating trend and
seasonality. [29] demonstrate that these linear models outperform more complex
Transformer models for long-term time series forecasting on several benchmarks.

An effective variant of neural networks for prediction tasks is the family of Graph
Neural Networks (GNNs), modeling network-based data like traffic networks [11].
GNNs allow to model both spatial and temporal dependency together for time series
forecasting. For instance, [28] propose STGCN to tackle the time series prediction
problem in the traffic domain with complete convolutional structures.

Given the various modeling capabilities of these multivariate models, a study into
whether these multivariate correlations can be captured in DF time series, and how
these relate to the characteristics of business processes underpinning various systems.
This is done by an extensive benchmark by a wide range of the aforementioned
techniques over a set of widely-used event logs.

3 Methodology

This work aims to perform DF forecasting using time series. More concretely, these
are built by counting the occurrence of each DF in certain predefined timesteps (e.g.
each day), determined by looking at the occurrence of the corresponding activity
pairs in a process. Note that, for now, we assume atomic events, i.e., we only have
a completion timestamp for each performed activity. In this way, we assume the
activities taking a long time to finish and a long time to start are both reflected in
a bottleneck in the DF. Figure 2 illustrates the transformation from event logs to DF
time series. By dividing the event log into day-based intervals, a sequence of DFG
matrices can be extracted from each subset of logs. The DFG matrices are flattened
to one-dimensional DF vectors and stacked together in chronological order to obtain
tabular time series data. However, a significant amount of DF relations in such a
matrix never occur in the event log (as the activity pairs forming the DFs beginning-
and end points are not present), so those are filtered out. Thus, the final tabular DF
data excludes the empty DF columns and retains the observed DFs coinciding with
the number of activity pairs present in the event log (of which there can be many) for
prediction. To summarize, our approach takes an event log as input and predicts the
DF time series as output. In the end, the predicted DFs support the construction of a
DFG to represent the forecasted process model, which is not in the scope of this paper.

4 Experimental Evaluation

In this section, we give an overview of the data, its preprocessing, the models used,
and finally we present the results of the benchmark.

4.1 Selected Data and Preprocessing

In the experiment, three publicly available event logs are used: BPI challenge of
2019 [7], a Hospital Billing event log [17], and a Road Traffic Fine Management
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Fig. 2: Data transformation of BPI2019_1 [7] as an example, where "RGR" is short
for "Record Goods Receipt" and "RIR" is short for "Record Invoice Receipt". The
time step granularity is set at 1 day.

Process log (RTFMP) [14], covering a diverse set of processes. The BPI challenge
of the 2019 event log contains four types of flows, and the used sub-log is the cat-
egory of “3-way match, invoice before GR”, indicated as BPI2019_1. In the current
experiments, to more accurately characterize process changes and provide insights
for practical applications, we take timesteps of one day.

Table 1 describes three event logs and the preprocessing. Firstly, to only retain
process behavior with enough signal in the event log, the infrequent variants are
removed, and we retain the variants with a coverage percentage of 99.99% of the
number of traces. Secondly, artificial “start” and “end” activities are added to the
beginning and end of every case. Finally, the time lengths of the filtered event logs are
reduced by trimming the first and last 10% of the time horizon as many systems have
warm-up periods in which behavior is different, as illustrated in Figure 1d. By focusing
on the steady-state part of processes, models can be trained on data that better
represents typical operations, improving its generalization capabilities and predictive
performance. Due to a large number of variants occurring rarely, the preprocessed event
logs contain less than half of the variants but keep more than 90% traces. The activities
“start” and “end” increase the number of activities and possible DFs after preprocessing.

4.2 Model Selection

As shown in section 2.1, the intricacies of the DF time series such as intermittency,
long-distance dependencies and severe multicollinearity motivate the selection of time
series forecasting approaches. The BPI2019_1 event log has a narrow time range
(so fewer time steps) and may be trackable for ML-based models of XGBoost and
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Table 1: Log Preprocessing
BPI2019_1 Hospital Billing RTFMP

original preprocessed original preprocessed original preprocessed
time range (days) 383 307 80% 1,132 906 80% 4,917 3,938 80%

# variants 7,835 740 9% 1,020 301 30% 231 106 46%
# traces 221,010 198,018 90% 100,000 90,604 91% 150,370 138,260 92%

# activities 39 32 82% 18 17 94% 11 13 118%
# events 1,234,494 1,301,182 105% 451,359 539,658 120% 561,470 720,625 128%

# unique DFs 413 149 36% 143 69 48% 70 39 56%
# DFs 1,013,484 1,103,164 109% 351,359 449,054 128% 411,100 582,365 142%

LightGBM due to their low training data requirements. The widely used RNNs and
their capabilities of finding autoregressive and potentially longer-distance dependencies
(in PPM) encourage us to extend them to PMF, including vanilla RNNs, LSTMs, and
GRUs. Given the effectiveness of simple MLP architectures, N-BEATS is utilized for
its robustness and N-HITS is included to capture the multi-scale seasonality, such as for
the DFs in Figure 1b and 1c. TCNs have the advantage of forecasting business process
changes by [18]. For long-term time series predictions like the RTFMP log, uncovering
the dynamic trends involves using Transformers, TFTs, DLinear, and NLinear.

Therefore, the selected models include XGBoost, LightGBM, RNNs, LSTMs,
GRUs, N-BEATS, N-HITS, TCNs, Transformers, TFTs, DLinear, and NLinear,
compared with baselines of persistence, mean forecast, and linear regression. The
persistence forecast, also known as naive forecast, takes the value of the last observed
data point as the prediction for the future. The mean forecast predicts future values
as the average of all past observations. The RNN, LSTM, and GRU have the same
structure, with 2 hidden layers and 64 units in each. The N-BEATS and N-HITS
have the same structure of 3 blocks with 4 hidden layers and 256 units on each. All
the deep learning models are trained for 100 epochs.

GNN-based approaches, such as DCRNN [15], which would more directly use the
process graph structure (e.g. the DFG), were omitted from this benchmark due to
preliminary results indicating the data requirements are too strong for this type of
problem (without significant architectural changes). Besides, the DFGs have time
series on the edges instead of the nodes, which is not typical of GNNs.

4.3 Experimental Setup

First, the event logs are preprocessed by removing infrequent variants, adding “start”
and “end” activities, and reducing the time length, as described in section 4.1. Then,
the number of occurrences of each DF within the determined time step of one day
is extracted as time series. To cover sufficient business days and provide strategic
forecasting, which is the main aim of PMF being a system-wide forecasting exercise,
we designed the model to learn the historical one-month data for predicting the future
half month. For this experiment, different sample time series of 32 time steps (days)
were used to forecast over an output horizon consisting of the next 16 days. Time
series data is divided into training and test sets by a 4:1 ratio.
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To visualize the overall evolution of DFs on three event logs, Figure 3 illustrates
the summed DF time series, where the dotted green line represents the boundary
between training and test sets and the red dots indicate the points exceeding the
3-sigma limit, i.e. the points that lie out of an interval 3 standard deviations removed
from the mean. The high spikes in Figure 3a and 3c show the challenges for modeling.
Note that BPI2019_1 appears to exhibit periodic patterns while RTFMP contains
more intermittency. The majority of red dots in Figure 3b lie in the test set, posing
challenges to learning these from the training data.

(a) BPI2019_1 (b) Hospital Billing (c) RTFMP

Fig. 3: Summed DFs Time Series Plots

We evaluate the forecasted horizon of 16 days in different ways. Firstly, we measure
the mean absolute error (MAE) and root mean square error (RMSE) between the
forecasted time series and the true values over the whole horizon. However, since
forecasting one timestep or multiple (like 16) time steps ahead can be regarded as
different problems we also evaluate the MAE and RMSE between forecast and true
value for only the last timestep 16 days ahead, as this reflects the most difficult part
of the horizon to forecast.

All preprocessing and models are implemented in Python with pm4py 1 and
Darts 2 packages separately. The models’ hyper-parameters are selected as the default
settings in Darts. The code is publicly available3.

4.4 Results

As mentioned earlier, the predictions are evaluated for all 16 time steps (all predictions
of output sequences) as measured in Table 2 and the last time step (the last predictions
of output sequences) as measured in Table 3 by mean absolute error (MAE) and
root mean square error (RMSE). Note that the MAE and RMSE in Table 2 is the
average error over the full horizon (16 days). The bottom lines in Table 2 and 3
show the number of evaluated output sequences and the number of predicted DFs in
each sequence. The additional “Rank” columns indicate the prediction performance
of different models according to the metrics of MAE or RMSE. The results show that
1 https://pm4py.fit.fraunhofer.de
2 https://unit8co.github.io/darts/index.html
3 https://github.com/YongboYu/multi_PMF
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different approaches rank vastly differently for different processes but XGBoost is
best-performing in general. The boosting models produce more accurate predictions
across all three datasets. However, the models of the RNN class perform poorly overall,
especially on the BPI2019_1 log. N-HITS outperforms N-BEATS, potentially due to
the capability of multi-scale time series techniques, but both achieve only moderate
predictive capabilities. TCN stands out only on the RTFMP but loses the strength on
the BPI2019_1. Transformer and TFT models have shown limited forecasting accuracy
across the three datasets. DLinear and NLinear models demonstrate poor performance
on the Hospital Billing and RTFMP, similar to the poor results of the linear regression.

Table 2: Evaluation for All 16 Output Predictions of All DFs
BPI2019_1 Hospital Billing RTFMP

Model MAE Rank RMSE Rank MAE Rank RMSE Rank MAE Rank RMSE Rank
Persistence 26.80 5 47.66 10 2.47 2 2.99 2 3.75 3 6.89 3

Mean 25.76 4 41.53 6 2.09 1 2.54 1 3.48 2 6.27 1
LinearRegression 24.13 3 35.43 3 5.13 15 5.80 15 16.95 15 23.14 15

XGBoost 17.99 1 35.04 2 2.92 4 3.48 4 3.22 1 7.15 4
LightGBM 22.54 2 33.34 1 2.89 3 3.39 3 4.72 5 8.67 6

RNN 39.69 12 56.08 11 3.72 11 4.35 10 7.59 9 11.18 8
LSTM 49.22 15 60.99 15 3.54 9 4.19 9 9.04 10 13.94 10
GRU 45.15 14 58.06 12 3.78 12 4.45 12 11.97 12 16.48 12

N-BEATS 31.14 9 45.83 8 3.13 6 3.59 5 10.78 11 14.93 11
N-HiTS 27.87 6 40.75 5 3.12 5 3.59 5 6.87 8 10.56 7
TCN 41.63 13 60.35 14 3.34 7 3.84 7 3.93 4 6.79 2

Transformer 29.81 7 44.52 7 3.45 8 3.94 8 5.28 6 8.37 5
TFT 34.11 10 58.47 13 3.59 10 4.37 11 6.35 7 12.86 9

DLinear 35.84 11 46.97 9 4.56 13 5.16 13 15.64 14 21.02 14
Nlinear 30.06 8 40.59 4 4.84 14 5.50 14 15.02 13 20.31 13

(#seq, #DF) (15, 149) (134, 69) (741, 39)

Table 3: Evaluation for Last One Output Prediction of All DFs
BPI2019_1 Hospital Billing RTFMP

Model MAE Rank RMSE Rank MAE Rank RMSE Rank MAE Rank RMSE Rank
Persistence 33.95 7 161.23 9 2.90 2 9.76 3 3.94 3 15.44 4

Mean 31.28 6 151.23 6 2.28 1 7.54 1 3.58 2 12.17 2
LinearRegression 28.09 3 140.83 4 5.70 15 18.10 15 17.18 15 56.79 15

XGBoost 22.11 1 105.27 1 3.01 3 8.93 2 3.37 1 12.46 3
LightGBM 24.94 2 120.39 2 3.25 5 10.15 6 4.74 5 16.16 5

RNN 33.96 8 167.09 10 4.11 12 12.50 11 9.10 9 25.74 9
LSTM 53.53 15 272.12 15 3.83 10 11.87 10 9.26 10 28.67 10
GRU 47.77 13 245.05 14 3.83 10 11.13 8 14.77 12 44.70 11

N-BEATS 40.92 12 205.09 12 3.28 6 10.30 7 13.41 11 46.32 12
N-HiTS 28.18 4 134.41 3 3.19 4 9.86 4 6.96 8 22.73 7
TCN 49.07 14 241.16 13 3.40 7 10.10 5 3.94 3 11.42 1

Transformer 34.34 11 159.63 8 3.73 9 12.57 12 6.27 6 20.23 6
TFT 34.16 9 172.24 11 3.67 8 11.41 9 6.63 7 24.32 8

DLinear 34.27 10 157.84 7 5.08 13 14.58 13 15.92 14 52.36 14
Nlinear 30.60 5 146.63 5 5.25 14 15.55 14 15.30 13 50.23 13

(#seq, #DF) (15, 149) (134, 69) (741, 39)
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5 Discussion

Given the results in Section 4.4, it is not possible to definitively confirm whether
multivariate approaches are superior. In some cases, even a naive forecast or a mean
forecast can lead to only a small prediction error in terms of MAE and RMSE. On
the other hand, two traditional ensemble models perform better than deep learning
approaches overall, especially on the BPI2019_1 and Hospital Billing, which consist
of shorter time lengths and higher dimensions of DF time series. In this section, we
discuss the challenges of DF time series prediction in PMF for general forecasting
models and multivariate deep learning models specifically.

In general, the evolution in the patterns of DF time series extracted from the event
logs are challenging to capture and model. Different information systems tailor the
timing of events and uniformly process them based on business content (i.e. batching).
Thus, many DF pairs occur intermittently with exceptionally high values and some
are present in clusters of a certain period, posing challenges for overall time series
forecasting techniques. Concerning the setting up, the DF time series with the step
of one day also introduces significant intermittency and fluctuations. A higher time
aggregation level is possible to smooth the DF time series and enhance the predictive
effect, however, this may again cause even sparser time series levels. In addition, the
window size of 32 days might not be large enough to predict the time horizon of 16
days. Large fluctuations and long-term seasonality and trends in DF time series may
require a longer window of inputs to learn and fit for more accurate predictions. The
above three aspects impact the time series forecasting approaches including univariate
and multivariate analysis techniques.

For multivariate deep learning approaches, we can identify several additional
reasons for their poor performance in the experiments. First of all, event logs with
short time ranges (a limited number of observations) are inadequate for training deep-
learning models. Both time series and deep learning models require a large amount
of data to fully learn complex multivariate relations and the fluctuations, seasonality,
and trends in the time dimension. For example, TCN’s performance ranks higher on
the event logs with longer time ranges and fewer DFs. On the other hand, training
traditional machine learning models is more manageable on small data sets (most
commonly used event logs can be considered small). This leads to XGBoost and Light-
GBM reporting lower error rates in the overall experiments. Secondly, the diverse and
widely fluctuating patterns of individual DF time series suggest that the relationships
among them are also complex to reveal. The constructed multivariate connections
might be insufficient and mislead the information propagated in the neural networks.

6 Conclusion and Future Work

In this paper, we propose data preprocessing for DF time series predictions in PMF.
The various intricacies tied to DF time series such as intermittency, long-range de-
pendencies, multi-scale presence, and so on, complicate the (multivariate) forecasting
exercise, hence a wide range of techniques of different multivariate forecasting methods
from machine learning and deep learning forecasting approaches with diverse archi-
tectures were benchmarked over three real-life event logs. XGBoost, as a traditional
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machine learning technique, performs better than deep learning-based models in
general, meaning that the most sophisticated state-of-the-art fails to handle the DF
time series’ inherent complexity. In line with the several other insights and limitations
raised in Section 5, several avenues for future work in PMF can be proposed.

For significant intermittency in the DF time series, specialized mechanisms such
as [13] can be incorporated to boost the predictive performance. Even though GNNs
are not covered in this paper, using the inherent capability to incorporate graph
structures of process models would still be worth exploring. In addition to DFs from
the control-flow aspect, forecasting process elements along other dimensions such
as resource allocation, bottlenecks, and decision points could provide rich insights
and enable proactive intervention. To generalize PMF, more event logs and process
characters will be investigated.
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